大數據已成為人工智能的助推力
隨著人工智能技術的細分場景越來越多,人工智能帶來的第四次工業革命浪潮已成洶湧之勢,眾多傳統行業借助AI賦能產業結構,不斷升級換代與創新變革,新產品也在不斷湧現,AI也在潛移默化改變著生活的方方面面,生物識別、視頻識別、內容審核、智能安防等。國內更是誕生了一些優秀人工智能初創企業。當前,人工智能已經不僅僅是提升工作效率的一種技術手段,同時還在重塑著產業鏈和價值創造方式。
人工智能這幾年有了這麽大的突破,其中一個重要的推動力就是大數據。
在大數據這個概念出現之前計算機並不能很好的解決需要人去做判別的一些問題。所以說如今的人工智能不如說是數據智能,人工智能其實就是用大量的數據作導向,讓需要機器來做判別的問題最終轉化為數據問題。
技術型的高科技創業公司都喜歡特別的新東西,大數據與幾年前的火熱相比,近幾年關註程度略有下降。大數據學習扣群: 74零零加413八yi大數據這個概念興起是在2011年至2014年期間,早年的大數據是在大型互聯網公司中重度使用和推動的技術,這些大公司面對著前所未有的數據量,需要采集數據,存儲數據,清理數據,查詢數據,分析數據,可視化數據。而這部分有些由產品來完成,有些由人力來完成,歸根結底,對於這一切工作,都需要建立一個數據驅動的文化。
大數據的價值
沒有數據支撐的個例沒有任何參考意義
在穩定收入的人群裏,大約三到五成的人在炒股,據統計,95%的個人投資最終跑不贏大盤,50-70%的頻繁短線交易中甚至在虧錢。那麽他們為什麽還要炒股,一方面是對自己的炒股能力的自信,另一方面看到周邊賺錢的個例,讓他們覺得炒股賺錢很容易,但是只要看看統計數據,就會得到相反的結論。
大量數據的意義
2005年,第一次做機器翻譯的Google請來了機器翻譯專家弗朗茲.奧科,一年之後做出了當時世界上最好的機器翻譯系統,在NIST的年度評審結果中,Google的BLEU得分51%,領先第二名5%,而基於語法規則翻譯的SYSTRAN僅為10.79%。奧科的秘訣卻還是兩年前的方法,利用了比其他研究機構多幾千甚至上萬倍的數據,訓練出一個六元模型。一般來說,要估計N元模型的各個條件概率,要有足夠多的數據,N越大,數據要越多。如果多使用兩三倍的數據,機器翻譯效果會好一點,但是幾萬倍的數據增加,量變的積累導致質變,就能達到更好的效果。
大數據的重要性
AI時代 大數據成人工智能應用重點
在醫療保健裏面,基因的缺陷和很多疾病都有關系,要想搞清楚其中的關系: 傳統的方法是通過實驗才能清楚某一段基因的機理,但這可能是個漫長的過程。還需要考慮到它的缺陷帶來的身體的變化,再研究這種變化可能導致的疾病,或者什麽情況下會導致疾病。但科學家研究幾十年,都很難找到很多疾病的關系。 而數據統計方法與這些正好相反,可以從數據出發,找到基因缺陷與疾病在統計上的相關性,然後再反過來分析這種相關性的內在原因。
人工智能賦能各個行業
AI時代 大數據成人工智能應用重點
隨著數據的積累、計算機算力的躍升和算法的優化,人工智能正在讓生活變得更高效。人工智能的持續進步和廣泛應用帶來的好處是巨大的,為了讓它真正有益於社會,同樣不能忽視的還有對人工智能的價值引導以及倫理調節。
2020年作為一個重要的時間節點,相關機構預測將會有500億只能設備接入互聯網,這500億設備都具備感知通訊和一部分處理的能力,他們會時時不斷的往服務端傳數據,那時人類所采集和傳輸的數據都只是其中的一小部分,而到了5G時代,數據就不光是為人服務了,也是在為物服務。人工智能也將隨著大數據的發展,將智能應用發展得淋漓盡致,在各行各業都得到廣泛的應用。包括智能家居,智慧金融,智能客服,智能醫療等各大領域。
?
大數據已成為人工智能的助推力