[HDU4035] Maze(概率DP)
阿新 • • 發佈:2019-03-06
eps getchar() cst || https cout fat har abs
HDU4035
題解
\(1.\)設對每個結點轉化為:\(E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;\) $ ??$方便dfs中轉移
\(2.\)推式子要考慮清楚葉節點的情況,要記得乘上概率\(\frac{1}{m}\)
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<vector> #include<cmath> #define debug(...) fprintf(stderr,__VA_ARGS__) #define Debug(x) cout<<#x<<"="<<x<<endl using namespace std; typedef long long LL; const int INF=1e9+7; inline LL read(){ register LL x=0,f=1;register char c=getchar(); while(c<48||c>57){if(c=='-')f=-1;c=getchar();} while(c>=48&&c<=57)x=(x<<3)+(x<<1)+(c&15),c=getchar(); return f*x; } const int MAXN=1e4+5; const double eps=1e-9; double A[MAXN],B[MAXN],C[MAXN],e[MAXN],k[MAXN]; int n,T; vector <int> G[MAXN]; inline bool dfs(int u,int pre){ int m=G[u].size(); A[u]=k[u]; B[u]=(1-k[u]-e[u])/m; C[u]=1-k[u]-e[u]; double tmp=0; for(int i=0;i<m;i++){ int v=G[u][i]; if(v==pre) continue; if(!dfs(v,u)) return false; A[u]+=(1-k[u]-e[u])/m*A[v]; C[u]+=(1-k[u]-e[u])/m*C[v]; tmp+=(1-k[u]-e[u])/m*B[v]; } if(fabs(tmp-1)<eps) return false;//如果$Ei$的系數趨向於0則無解 A[u]/=(1-tmp);//很巧妙地對於葉子節點答案也是正確的 B[u]/=(1-tmp); C[u]/=(1-tmp); return true; } int main(){ T=read(); for(int Case=1;Case<=T;Case++){ n=read(); for(int i=1;i<=n;i++) G[i].clear(); for(int i=1;i<=n-1;i++){ int x=read(),y=read(); G[x].push_back(y); G[y].push_back(x); } for(int i=1;i<=n;i++){ k[i]=(double)read()/100.0; e[i]=(double)read()/100.0; } if((!dfs(1,0))||(fabs(1-A[1])<eps)) printf("Case %d: impossible\n",Case); else printf("Case %d: %.6lf\n",Case,C[1]/(1-A[1])); } }
[HDU4035] Maze(概率DP)