Five Dimensional Points CodeForces - 851C (計算幾何+暴力)
You are given set of n points in 5-dimensional space. The points are labeled from 1 to n. No two points coincide.
We will call point a bad if there are different points b
The angle between vectors and in 5-dimensional space is defined as , where is the scalar product and is length of .
Given the list of points, print the indices of the good points in ascending order.
The first line of input contains a single integer n (1 ≤ n ≤ 103) — the number of points.
The next n lines of input contain five integers ai, bi, ci, di, ei (|ai|, |bi|, |ci|, |di|, |ei| ≤ 103) — the coordinates of the i-th point. All points are distinct.
First, print a single integer k — the number of good points.
Then, print k integers, each on their own line — the indices of the good points in ascending order.
Examples input Copy6output Copy
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1input Copy
1
3output Copy
0 0 1 2 0
0 0 9 2 0
0 0 5 9 0
0Note
In the first sample, the first point forms exactly a angle with all other pairs of points, so it is good.
In the second sample, along the cd plane, we can see the points look as follows:
We can see that all angles here are acute, so no points are good.
題意:
給你n個五維空間上的n個點。
讓你求出“好”的點的數量。
“好”的點的定義是:
對於一個點i,不存在任何其他兩個點,j,k, (三個點互不相同) 使得向量 i->j和向量 i - > k 是銳角。
思路:
判斷兩個向量的夾角是否是銳角可以通過向量的點積來判斷。
五維空間的點積和二維三維的都一樣,都是對應坐標相乘再相加。
然後每一次點積後的結果都可以得出這樣的結論。
如圖,如果點積後的結果小於等於零,那麽證明∠J I K不是銳角。
那麽就得出結論 j 和k都不是good點,因為對於j,有i和k是的所成的角是銳角。
k同理。
而如果點積結果大於0,那麽證明 角jik是銳角,所以i不是good point
需要一個數組vis來維護哪些點是已經被確定不是good點的,以此來降低時間復雜度。
註意到枚舉的時候,第三個變量k,設為j+1開始枚舉,這樣不會讓i,j,k每一次重復計算而導致答案錯誤。
細節見代碼:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #include <iomanip> #define ALL(x) (x).begin(), (x).end() #define rt return #define dll(x) scanf("%I64d",&x) #define xll(x) printf("%I64d\n",x) #define sz(a) int(a.size()) #define all(a) a.begin(), a.end() #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), ‘\0‘, sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define gg(x) getInt(&x) #define db(x) cout<<"== [ "<<x<<" ] =="<<endl; using namespace std; typedef long long ll; ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;} inline void getInt(int* p); const int maxn=1010; const int inf=0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ int vis[maxn]; struct node { ll a,b,c,d,e; }arr[maxn]; int n; ll f(int i,int j,int k) { ll a1=arr[j].a-arr[i].a; ll a2=arr[k].a-arr[i].a; ll b1=arr[j].b-arr[i].b; ll b2=arr[k].b-arr[i].b; ll c1=arr[j].c-arr[i].c; ll c2=arr[k].c-arr[i].c; ll d1=arr[j].d-arr[i].d; ll d2=arr[k].d-arr[i].d; ll e1=arr[j].e-arr[i].e; ll e2=arr[k].e-arr[i].e; ll res=a1*a2+b1*b2+c1*c2+d1*d2+e1*e2; return res; } int main() { //freopen("D:\\common_text\\code_stream\\in.txt","r",stdin); //freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); gbtb; cin>>n; repd(i,1,n) { cin>>arr[i].a>>arr[i].b>>arr[i].c>>arr[i].d>>arr[i].e; } repd(i,1,n) { if(i==2) { i=2; } if(vis[i]) continue; repd(j,1,n) { if(i==j) { continue; } repd(k,j+1,n) { if(k==j||k==i) { continue; } if(f(i,j,k)<=0) { vis[j]=vis[k]=1; break; }else { vis[i]=1; break; } } if(vis[i]) break; } } int ans=0; repd(i,1,n) { if(!vis[i]) { ans++; } } cout<<ans<<endl; repd(i,1,n) { if(!vis[i]) { cout<<i<<" "; } }cout<<endl; return 0; } inline void getInt(int* p) { char ch; do { ch = getchar(); } while (ch == ‘ ‘ || ch == ‘\n‘); if (ch == ‘-‘) { *p = -(getchar() - ‘0‘); while ((ch = getchar()) >= ‘0‘ && ch <= ‘9‘) { *p = *p * 10 - ch + ‘0‘; } } else { *p = ch - ‘0‘; while ((ch = getchar()) >= ‘0‘ && ch <= ‘9‘) { *p = *p * 10 + ch - ‘0‘; } } }
Five Dimensional Points CodeForces - 851C (計算幾何+暴力)