Scrapy爬取貓眼《復仇者聯盟4終局之戰》影評
一.分析
首先簡單介紹一下Scrapy的基本流程:
- 引擎從調度器中取出一個鏈接(URL)用於接下來的抓取
- 引擎把URL封裝成一個請求(Request)傳給下載器
- 下載器把資源下載下來,並封裝成應答包(Response)
- 爬蟲解析Response
- 解析出實體(Item),則交給實體管道進行進一步的處理
- 解析出的是鏈接(URL),則把URL交給調度器等待抓取
在網上找到了接口:http://m.maoyan.com/mmdb/comments/movie/248172.json?_v_=yes&offset=0&startTime=2019-02-05%2020:28:22,可以把offset的值設定為0,通過改變startTime的值來獲取更
多的評論信息(把每頁評論數據中最後一次評論時間作為新的startTime並構造url重新請求)(startTime=2019-02-05%2020:28:22這裏的%20表示空格)
二.主要代碼
items.py
import scrapy class MaoyanItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() city = scrapy.Field() # 城市 content = scrapy.Field() # 評論 user_id = scrapy.Field() # 用戶id nick_name = scrapy.Field() # 昵稱 score = scrapy.Field() # 評分 time = scrapy.Field() # 評論時間 user_level = scrapy.Field() # 用戶等級
comment.py
import scrapy import random from scrapy.http import Request import datetime import json from maoyan.items import MaoyanItem class CommentSpider(scrapy.Spider): name = ‘comment‘ allowed_domains = [‘maoyan.com‘] uapools = [ ‘Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1‘, ‘Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0) Gecko/20100101 Firefox/6.0‘, ‘Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50‘, ‘Opera/9.80 (Windows NT 6.1; U; zh-cn) Presto/2.9.168 Version/11.50‘, ‘Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; InfoPath.3)‘, ‘Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.0)‘, ‘Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)‘, ‘Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)‘, ‘Mozilla/5.0 (Windows; U; Windows NT 6.1; ) AppleWebKit/534.12 (KHTML, like Gecko) Maxthon/3.0 Safari/534.12‘, ‘Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; .NET4.0C; .NET4.0E)‘, ‘Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; .NET4.0C; .NET4.0E; SE 2.X MetaSr 1.0)‘, ‘Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.3 (KHTML, like Gecko) Chrome/6.0.472.33 Safari/534.3 SE 2.X MetaSr 1.0‘, ‘Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; .NET4.0C; .NET4.0E)‘, ‘Mozilla/5.0 (Windows NT 6.1) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/13.0.782.41 Safari/535.1 QQBrowser/6.9.11079.201‘, ‘Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.3; .NET4.0C; .NET4.0E) QQBrowser/6.9.11079.201‘, ‘Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)‘, ‘Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.80 Safari/537.36‘, ‘Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0‘ ] thisua = random.choice(uapools) header = {‘User-Agent‘: thisua} current_time = datetime.datetime.now().strftime(‘%Y-%m-%d %H:%M:%S‘) current_time = ‘2019-04-24 18:50:22‘ end_time = ‘2019-04-24 00:05:00‘ # 電影上映時間 url = ‘http://m.maoyan.com/mmdb/comments/movie/248172.json?_v_=yes&offset=0&startTime=‘ +current_time.replace(‘ ‘,‘%20‘) def start_requests(self): current_t = str(self.current_time) if current_t > self.end_time: try: yield Request(self.url, headers=self.header, callback=self.parse) except Exception as error: print(‘請求1出錯-----‘ + str(error)) else: print(‘全部有關信息已經搜索完畢‘) def parse(self, response): item = MaoyanItem() data = response.body.decode(‘utf-8‘, ‘ignore‘) json_data = json.loads(data)[‘cmts‘] count = 0 for item1 in json_data: if ‘cityName‘ in item1 and ‘nickName‘ in item1 and ‘userId‘ in item1 and ‘content‘ in item1 and ‘score‘ in item1 and ‘startTime‘ in item1 and ‘userLevel‘ in item1: try: city = item1[‘cityName‘] comment = item1[‘content‘] user_id = item1[‘userId‘] nick_name = item1[‘nickName‘] score = item1[‘score‘] time = item1[‘startTime‘] user_level = item1[‘userLevel‘] item[‘city‘] = city item[‘content‘] = comment item[‘user_id‘] = user_id item[‘nick_name‘] = nick_name item[‘score‘] = score item[‘time‘] = time item[‘user_level‘] = user_level yield item count += 1 if count >= 15: temp_time = item[‘time‘] current_t = datetime.datetime.strptime(temp_time, ‘%Y-%m-%d %H:%M:%S‘) + datetime.timedelta( seconds=-1) current_t = str(current_t) if current_t > self.end_time: url1 = ‘http://m.maoyan.com/mmdb/comments/movie/248172.json?_v_=yes&offset=0&startTime=‘ + current_t.replace( ‘ ‘, ‘%20‘) yield Request(url1, headers=self.header, callback=self.parse) else: print(‘全部有關信息已經搜索完畢‘) except Exception as error: print(‘提取信息出錯1-----‘ + str(error)) else: print(‘信息不全,已濾除‘)
pipelines文件
import pandas as pd class MaoyanPipeline(object): def process_item(self, item, spider): dict_info = {‘city‘: item[‘city‘], ‘content‘: item[‘content‘], ‘user_id‘: item[‘user_id‘], ‘nick_name‘: item[‘nick_name‘], ‘score‘: item[‘score‘], ‘time‘: item[‘time‘], ‘user_level‘: item[‘user_level‘]} try: data = pd.DataFrame(dict_info, index=[0]) # 為data創建一個表格形式 ,註意加index = [0] data.to_csv(‘G:\info.csv‘, header=False, index=True, mode=‘a‘, encoding=‘utf_8_sig‘) # 模式:追加,encoding = ‘utf-8-sig‘ except Exception as error: print(‘寫入文件出錯-------->>>‘ + str(error)) else: print(dict_info[‘content‘] + ‘---------->>>已經寫入文件‘)
最後爬完的數據12M左右,65000條數據左右
三.數據可視化
1.主要代碼
用到的模塊:pandas數據處理,matplotlib繪圖,jieba分詞,wordcloud詞雲,地圖相關模塊(echarts-countries-pypkg,echarts-china-provinces-pypkg, echarts-china-cities-pypkg)
#!/usr/bin/env python # -*- coding:utf-8 -*- import pandas as pd from collections import Counter from pyecharts import Geo, Bar, Scatter import jieba import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS import time #觀眾地域圖中部分註釋 #attr:標簽名稱(地點) #value:數值 #visual_range:可視化範圍 #symbol_size:散點的大小 #visual_text_color:標簽顏色 #is_visualmap:是否映射(數量與顏色深淺是否掛鉤) #maptype:地圖類型 #讀取csv文件(除了詞雲,其它圖表用的源數據) def read_csv(filename, titles): comments = pd.read_csv(filename, names = titles, low_memory = False) return comments #詞雲用的源數據(比較小) def read_csv1(filename1, titles): comments = pd.read_csv(filename1, names = titles, low_memory = False) return comments #全國觀眾地域分布 def draw_map(comments): attr = comments[‘city_name‘].fillna(‘zero_token‘) #以‘zero_token‘代替缺失數據 data = Counter(attr).most_common(300) #Counter統計各個城市出現的次數,返回前300個出現頻率較高的城市 # print(data) data.remove(data[data.index([(i,x) for i,x in data if i == ‘zero_token‘][0])]) #檢索城市‘zero_token‘並移除(‘zero_token‘, 578) geo =Geo(‘《復聯4》全國觀眾地域分布‘, ‘數據來源:Mr.W‘, title_color = ‘#fff‘, title_pos = ‘center‘, width = 1000, height = 600, background_color = ‘#404a59‘) attr, value = geo.cast(data) #data形式[(‘合肥‘,229),(‘大連‘,112)] geo.add(‘‘, attr, value, visual_range = [0, 4500], maptype = ‘china‘, visual_text_color = ‘#fff‘, symbol_size = 10, is_visualmap = True) geo.render(‘G:\\影評\\觀眾地域分布-地理坐標圖.html‘) print(‘全國觀眾地域分布已完成‘) #觀眾地域排行榜單 def draw_bar(comments): data_top20 = Counter(comments[‘city_name‘]).most_common(20) #前二十名城市 bar = Bar(‘《復聯4》觀眾地域排行榜單‘, ‘數據來源:Mr.W‘, title_pos = ‘center‘, width = 1200, height = 600) attr, value = bar.cast(data_top20) bar.add(‘‘, attr, value, is_visualmap = True, visual_range = [0, 4500], visual_text_color = ‘#fff‘, is_more_utils = True, is_label_show = True) bar.render(‘G:\\影評\\觀眾地域排行榜單-柱狀圖.html‘) print(‘觀眾地域排行榜單已完成‘) #觀眾評論數量與日期的關系 #必須統一時間格式,不然時間排序還是亂的 def draw_data_bar(comments): time1 = comments[‘time‘] time_data = [] for t in time1: if pd.isnull(t) == False and ‘time‘ not in t: #如果元素不為空 date1 = t.replace(‘/‘, ‘-‘) date2 = date1.split(‘ ‘)[0] current_time_tuple = time.strptime(date2, ‘%Y-%m-%d‘) #把時間字符串轉化為時間類型 date = time.strftime(‘%Y-%m-%d‘, current_time_tuple) #把時間類型數據轉化為字符串類型 time_data.append(date) data = Counter(time_data).most_common() #data形式[(‘2019/2/10‘, 44094), (‘2019/2/9‘, 43680)] data = sorted(data, key = lambda data : data[0]) #data1變量相當於(‘2019/2/10‘, 44094)各個元組 itemgetter(0) bar =Bar(‘《復聯4》觀眾評論數量與日期的關系‘, ‘數據來源:Mr.W‘, title_pos = ‘center‘, width = 1200, height = 600) attr, value = bar.cast(data) #[‘2019/2/10‘, ‘2019/2/11‘, ‘2019/2/12‘][44094, 38238, 32805] bar.add(‘‘, attr, value, is_visualmap = True, visual_range = [0, 3500], visual_text_color = ‘#fff‘, is_more_utils = True, is_label_show = True) bar.render(‘G:\\影評\\觀眾評論日期-柱狀圖.html‘) print(‘觀眾評論數量與日期的關系已完成‘) #觀眾評論數量與時間的關系 #這裏data中每個元組的第一個元素要轉化為整數型,不然排序還是亂的 def draw_time_bar(comments): time = comments[‘time‘] time_data = [] real_data = [] for t in time: if pd.isnull(t) == False and ‘:‘ in t: time = t.split(‘ ‘)[1] hour = time.split(‘:‘)[0] time_data.append(hour) data = Counter(time_data).most_common() for item in data: temp1 = list(item) temp2 = int(temp1[0]) temp3 = (temp2,temp1[1]) real_data.append(temp3) data = sorted(real_data, key = lambda x : x[0]) bar = Bar(‘《復聯4》觀眾評論數量與時間的關系‘, ‘數據來源:Mr.W‘, title_pos = ‘center‘, width = 1200, height = 600) attr, value = bar.cast(data) bar.add(‘‘, attr, value, is_visualmap = True, visual_range = [0, 3500], visual_text_color = ‘#fff‘, is_more_utils = True, is_label_show = True) bar.render(‘G:\\影評\\觀眾評論時間-柱狀圖.html‘) print(‘觀眾評論數量與時間的關系已完成‘) #詞雲,用一部分數據生成,不然數據量有些大,會報錯MemoryError(64bit的python版本不會) def draw_word_cloud(comments): data = comments[‘comment‘] comment_data = [] print(‘由於數據量比較大,分詞這裏有些慢,請耐心等待‘) for item in data: if pd.isnull(item) == False: comment_data.append(item) comment_after_split = jieba.cut(str(comment_data), cut_all = False) words = ‘ ‘.join(comment_after_split) stopwords = STOPWORDS.copy() stopwords.update({‘電影‘, ‘非常‘, ‘這個‘, ‘那個‘, ‘因為‘, ‘沒有‘, ‘所以‘, ‘如果‘, ‘演員‘, ‘這麽‘, ‘那麽‘, ‘最後‘, ‘就是‘, ‘不過‘, ‘這個‘, ‘一個‘, ‘感覺‘, ‘這部‘, ‘雖然‘, ‘不是‘, ‘真的‘, ‘覺得‘, ‘還是‘, ‘但是‘}) wc = WordCloud(width = 800, height = 600, background_color = ‘#000000‘, font_path = ‘simfang‘, scale = 5, stopwords = stopwords, max_font_size = 200) wc.generate_from_text(words) plt.imshow(wc) plt.axis(‘off‘) plt.savefig(‘G:\\影評\\WordCloud.png‘) plt.show() #觀眾評分排行榜單 def draw_score_bar(comments): score_list = [] data_score = Counter(comments[‘score‘]).most_common() for item in data_score: if item[0] != ‘score‘: score_list.append(item) data = sorted(score_list, key = lambda x : x[0]) bar = Bar(‘《復聯4》觀眾評分排行榜單‘, ‘數據來源:Mr.W‘, title_pos = ‘center‘, width = 1200, height = 600) attr, value = bar.cast(data) bar.add(‘‘, attr, value, is_visualmap = True, visual_range = [0, 4500], visual_text_color = ‘#fff‘, is_more_utils = True, is_label_show = True) bar.render(‘G:\\影評\\觀眾評分排行榜單-柱狀圖.html‘) print(‘觀眾評分排行榜單已完成‘) #觀眾用戶等級排行榜單 def draw_user_level_bar(comments): level_list = [] data_level = Counter(comments[‘user_level‘]).most_common() for item in data_level: if item[0] != ‘user_level‘: level_list.append(item) data = sorted(level_list, key = lambda x : x[0]) bar = Bar(‘《復聯4》觀眾用戶等級排行榜單‘, ‘數據來源:Mr.W‘, title_pos = ‘center‘, width = 1200, height = 600) attr, value = bar.cast(data) # is_more_utils = True 提供更多的實用工具按鈕 bar.add(‘‘, attr, value, is_visualmap = True, visual_range = [0, 4500], visual_text_color = ‘#fff‘, is_more_utils = True, is_label_show = True) bar.render(‘G:\\影評\\觀眾用戶等級排行榜單-柱狀圖.html‘) print(‘觀眾用戶等級排行榜單已完成‘) if __name__ == ‘__main__‘: filename = ‘G:\\info.csv‘ filename2 = ‘G:\\info.csv‘ titles = [‘city_name‘,‘comment‘,‘user_id‘,‘nick_name‘,‘score‘,‘time‘,‘user_level‘] comments = read_csv(filename, titles) comments2 = read_csv1(filename2, titles) draw_map(comments) draw_bar(comments) draw_data_bar(comments) draw_time_bar(comments) draw_word_cloud(comments2) draw_score_bar(comments) draw_user_level_bar(comments)
2.效果與分析
01.觀眾地域分布-地理坐標圖
由全國地域熱力圖可見,觀眾主要分布在中部,南部,東部以及東北部,各省會城市的觀眾尤其多(紅色代表觀眾最多),這與實際的經濟、文化、消費水平基本相符.(ps:復聯4的票價有點貴)
02.《復聯4》觀眾地域排行榜單
北上廣深等一線城市,觀眾粉絲多,消費水平可以。觀影數量非常多。
03.《復聯4》觀眾評分排行榜單
可以看到評分滿分的用戶幾乎超過總人數的70%,可見觀眾看完電影之後很滿足,也說明了電影的可看性很高
04.《復聯4》觀眾評論數量與日期的關系
24號上映到現在已經三天,其中觀影人數最多的是25號,可能大家覺得首映有點小貴吧,哈哈。
05.《復聯4》觀眾評論數量與時間的關系
從圖中可以看出,評論的數量主要集中在16-23點,因為這部電影時長為2小時,所以把評論時間往前移動2小時基本就是看電影時間。可以看出大家都是中午吃完飯(13點左右)和晚上吃完飯(19點左右)後再去看電影的,而且晚上看電影的人更多
06.《復聯4》觀眾用戶等級排行榜單
可見用戶等級為0,5,6的用戶基本沒有,而且隨著等級的提升,人數急劇變少。新用戶可能是以年輕人為主,對科幻電影感興趣,因而評論數量較多,而老用戶主要偏向於現實劇情類的電影,評論數量較少
07.《復聯4》詞雲圖
在詞雲圖中可以看到,“好看,可以,完美,精彩,情懷”等字眼,看來影片還是挺好看的。接著就是“鋼鐵俠,美隊,滅霸”看來這幾個人在影評中有重要的故事線。
Scrapy爬取貓眼《復仇者聯盟4終局之戰》影評