字符串轉數字的hash函數-布隆過濾器
阿新 • • 發佈:2019-05-06
world! 編輯 ble 元素 二進制 這一 一個點 .com 隨機
相比於其它的數據結構,布隆過濾器在空間和時間方面都有巨大的優勢。布隆過濾器存儲空間和插入/查詢時間都是常數。另外, Hash函數相互之間沒有關系,方便由硬件並行實現。布隆過濾器不需要存儲元素本身,在某些對保密要求非常嚴格的場合有優勢。
布隆過濾器可以表示全集,其它任何數據結構都不能。
布隆過濾器(Bloom Filter)
是1970年由布隆提出的。它實際上是一個很長的二進制向量和一系列隨機映射函數。布隆過濾器可以用於檢索一個元素是否在一個集合中。它的優點是空間效率和查詢時間都比一般的算法要好的多,缺點是有一定的誤識別率和刪除困難。
基本概念
如果想要判斷一個元素是不是在一個集合裏,一般想到的是將所有元素保存起來,然後通過比較確定。鏈表,樹等等數據結構都是這種思路. 但是隨著集合中元素的增加,我們需要的存儲空間越來越大,檢索速度也越來越慢(O(n),O(logn))。不過世界上還有一種叫作散列表(又叫哈希表,Hash table)的數據結構。它可以通過一個Hash函數將一個元素映射成一個位陣列(Bit array)中的一個點。這樣一來,我們只要看看這個點是不是1就可以知道集合中有沒有它了。這就是布隆過濾器的基本思想。優點
缺點
但是布隆過濾器的缺點和優點一樣明顯。誤算率是其中之一。隨著存入的元素數量增加,誤算率隨之增加。常見的補救辦法是建立一個小的白名單,存儲那些可能被誤判的元素。但是如果元素數量太少,則使用散列表足矣。 另外,一般情況下不能從布隆過濾器中刪除元素。我們很容易想到把位列陣變成整數數組,每插入一個元素相應的計數器加1, 這樣刪除元素時將計數器減掉就可以了。然而要保證安全的刪除元素並非如此簡單。首先我們必須保證刪除的元素的確在布隆過濾器裏面. 這一點單憑這個過濾器是無法保證的。另外計數器回繞也會造成問題。 在降低誤算率方面,有不少工作,使得出現了很多布隆過濾器的變種。基本的介紹到這,下面是介紹字符串轉數字的一些hash函數,
算法大概有如下幾種:
- BKDRHash
- APHash
- DJBHash
- JSHash
- RSHash
- SDBMHash
- PJWHash
- ELFHash
nodejs的安裝包地址:https://www.npmjs.com/package/bling-hashes
使用方法如下
var bling = require("bling-hashes"); var hash = bling.bkdr("Hello world!"); ///< 501511565
字符串轉數字的hash函數-布隆過濾器