Android原始碼之Camera系統架構
Camera的架構與Android系統的整體架構保持一致,如下圖所示,本文主要從以下四個方面對其進行說明。
- Framework:Camera.java
- Android Runtime:android_hardware_Camera.cpp
- Library:Camera Client和Camera Service
- HAL:CameraHardwareInterface
Camera系統架構
一、Framework:Camera.java
Camera是應用層軟體直接使用的類,涵蓋了啟動、預覽、拍攝及關閉等操作攝像頭的全部介面。Camera.java在Android原始碼中的路徑為:framework/base/core/java/android/hardware。為了說明整個Camera系統的架構,這裡暫不橫向分析Camera.java的功能,下面從open()方法著手:
public static Camera open() { int numberOfCameras = getNumberOfCameras(); CameraInfo cameraInfo = new CameraInfo(); for (int i = 0; i < numberOfCameras; i++) { getCameraInfo(i, cameraInfo); if (cameraInfo.facing == CameraInfo.CAMERA_FACING_BACK) { return new Camera(i); } } return null; }
open()方法需要注意以下幾點:
- getNumberOfCameras為native方法,實現在android_hardware_Camera.cpp中;
- CameraInfo是Camera定義的靜態內部類,包含facing、orientation、canDisableShutterSound;
- getCameraInfo內部呼叫native方法_getCameraInfo獲取攝像頭資訊;
- open()預設啟動的是後置攝像頭(CAMERA_FACING_BACK)。
/** used by Camera#open, Camera#open(int) */ Camera(int cameraId) { int err = cameraInitNormal(cameraId); if (checkInitErrors(err)) { switch(err) { case EACCESS: throw new RuntimeException("Fail to connect to camera service"); case ENODEV: throw new RuntimeException("Camera initialization failed"); default: // Should never hit this. throw new RuntimeException("Unknown camera error"); } } }
Camera構造器的核心實現在cameraInitNormal中,cameraInitNormal呼叫cameraInitVersion,並傳入引數cameraId和CAMERA_HAL_API_VERSION_NORMAL_CONNECT,後者代表HAL的版本。
private int cameraInitVersion(int cameraId, int halVersion) {
……
String packageName = ActivityThread.currentPackageName();
return native_setup(new WeakReference<Camera>(this), cameraId, halVersion, packageName);
}
cameraInitNormal呼叫本地方法native_setup(),由此進入到android_hardware_Camera.cpp中,native_setup()的簽名如下:
private native final int native_setup(Object camera_this, int cameraId, int halVersion, String packageName);
二、Android Runtime:android_hardware_Camera.cpp
native_setup()被動態註冊到JNI,通過JNI呼叫android_hardware_Camera_native_setup()方法。
static JNINativeMethod camMethods[] = {
……
{ "native_setup", "(Ljava/lang/Object;ILjava/lang/String;)V",
(void*)android_hardware_Camera_native_setup }
……
};
JNI的重點是android_hardware_Camera_native_setup()方法的實現:
// connect to camera service
static jint android_hardware_Camera_native_setup(JNIEnv *env, jobject thiz,
jobject weak_this, jint cameraId, jint halVersion, jstring clientPackageName)
{
// Convert jstring to String16
const char16_t *rawClientName = env->GetStringChars(clientPackageName, NULL);
jsize rawClientNameLen = env->GetStringLength(clientPackageName);
String16 clientName(rawClientName, rawClientNameLen);
env->ReleaseStringChars(clientPackageName, rawClientName);
sp<Camera> camera;
if (halVersion == CAMERA_HAL_API_VERSION_NORMAL_CONNECT) {
// Default path: hal version is don't care, do normal camera connect.
camera = Camera::connect(cameraId, clientName,
Camera::USE_CALLING_UID);
} else {
jint status = Camera::connectLegacy(cameraId, halVersion, clientName,
Camera::USE_CALLING_UID, camera);
if (status != NO_ERROR) {
return status;
}
}
if (camera == NULL) {
return -EACCES;
}
// make sure camera hardware is alive
if (camera->getStatus() != NO_ERROR) {
return NO_INIT;
}
jclass clazz = env->GetObjectClass(thiz);
if (clazz == NULL) {
// This should never happen
jniThrowRuntimeException(env, "Can't find android/hardware/Camera");
return INVALID_OPERATION;
}
// We use a weak reference so the Camera object can be garbage collected.
// The reference is only used as a proxy for callbacks.
sp<JNICameraContext> context = new JNICameraContext(env, weak_this, clazz, camera);
context->incStrong((void*)android_hardware_Camera_native_setup);
camera->setListener(context);
// save context in opaque field
env->SetLongField(thiz, fields.context, (jlong)context.get());
return NO_ERROR;
}
android_hardware_Camera_native_setup()方法通過呼叫Camera::connect()方法請求連線CameraService服務。入參中:
- clientName是通過將clientPackageName從jstring轉換為String16格式得到;
- Camera::USE_CALLING_UID是定義在Camera.h中的列舉型別,其值為ICameraService::USE_CALLING_UID(同樣為列舉型別,值為-1)。
Camera::connect()位於Camera.cpp中,由此進入到Library層。
三、Library:Camera Client和Camera Service
如上述架構圖中所示,ICameraService.h、ICameraClient.h和ICamera.h三個類定義了Camera的介面和架構,ICameraService.cpp和Camera.cpp兩個檔案用於Camera架構的實現,Camera的具體功能在下層呼叫硬體相關的介面來實現。Camera.h是Camera系統對上層的介面。
具體的,Camera類繼承模板類CameraBase,Camera::connect()呼叫了CameraBase.cpp中的connect()方法。
sp<Camera> Camera::connect(int cameraId, const String16& clientPackageName,
int clientUid)
{
return CameraBaseT::connect(cameraId, clientPackageName, clientUid);
}
CameraBase實際上又繼承了IBinder的DeathRecipient內部類,DeathRecipient虛擬繼承自RefBase。RefBase是Android中的引用計數基礎類,其中定義了incStrong、decStrong、incWeak和decWeak等涉及sp/wp的指標操作函式,當然這扯遠了。
template <typename TCam>
struct CameraTraits {
};
template <typename TCam, typename TCamTraits = CameraTraits<TCam> >
class CameraBase : public IBinder::DeathRecipient
{
public:
static sp<TCam> connect(int cameraId,
const String16& clientPackageName,
int clientUid);
……
}
class DeathRecipient : public virtual RefBase
{
public:
virtual void binderDied(const wp<IBinder>& who) = 0;
};
回到Camera::connect()的實現上,其中,new TCam(cameraId)生成BnCameraClient物件,BnCameraClient定義在ICameraClient.h檔案中,繼承自模板類BnInterface。getCameraService()方法返回CameraService的服務代理BpCameraService,BpCameraService同樣繼承自模板類BnInterface。然後通過Binder通訊傳送CONNECT命令,當BnCameraService收到CONNECT命令後呼叫CameraService的connect()成員函式來做相應的處理。
template <typename TCam, typename TCamTraits>
sp<TCam> CameraBase<TCam, TCamTraits>::connect(int cameraId,
const String16& clientPackageName,
int clientUid)
{
ALOGV("%s: connect", __FUNCTION__);
sp<TCam> c = new TCam(cameraId); // BnCameraClient
sp<TCamCallbacks> cl = c;
status_t status = NO_ERROR;
const sp<ICameraService>& cs = getCameraService(); // BpCameraService
if (cs != 0) {
TCamConnectService fnConnectService = TCamTraits::fnConnectService;
status = (cs.get()->*fnConnectService)(cl, cameraId, clientPackageName, clientUid,
/*out*/ c->mCamera);
}
if (status == OK && c->mCamera != 0) {
c->mCamera->asBinder()->linkToDeath(c);
c->mStatus = NO_ERROR;
} else {
ALOGW("An error occurred while connecting to camera: %d", cameraId);
c.clear();
}
return c;
}
class BnCameraClient: public BnInterface<ICameraClient>
{
public:
virtual status_t onTransact( uint32_t code,
const Parcel& data,
Parcel* reply,
uint32_t flags = 0);
};
class BpCameraService: public BpInterface<ICameraService>
{
public:
BpCameraService(const sp<IBinder>& impl)
: BpInterface<ICameraService>(impl)
{
}
……
}
注:connect()函式在BpCameraService和BnCameraService的父類ICameraService中宣告為純虛擬函式,在BpCameraService和CameraService中分別給出了實現,BpCameraService作為代理類,提供介面給客戶端,真正實現在BnCameraService的子類CameraService中。
在BpCameraService中,connect()函式實現如下:
// connect to camera service (android.hardware.Camera)
virtual status_t connect(const sp<ICameraClient>& cameraClient, int cameraId,
const String16 &clientPackageName, int clientUid,
/*out*/
sp<ICamera>& device)
{
Parcel data, reply;
data.writeInterfaceToken(ICameraService::getInterfaceDescriptor());
data.writeStrongBinder(cameraClient->asBinder());
data.writeInt32(cameraId);
data.writeString16(clientPackageName);
data.writeInt32(clientUid);
// BpBinder的transact()函式向IPCThreadState例項傳送訊息,通知其有訊息要傳送給binder driver
remote()->transact(BnCameraService::CONNECT, data, &reply);
if (readExceptionCode(reply)) return -EPROTO;
status_t status = reply.readInt32();
if (reply.readInt32() != 0) {
device = interface_cast<ICamera>(reply.readStrongBinder()); // client端讀出server返回的bind
}
return status;
}
首先將傳遞過來的Camera物件cameraClient轉換成IBinder型別,將呼叫的引數寫到Parcel(可理解為Binder通訊的管道)中,通過BpBinder的transact()函式傳送訊息,然後由BnCameraService去響應該連線,最後就是等待服務端返回,如果成功則生成一個BpCamera例項。
真正的服務端響應實現在BnCameraService的onTransact()函式中,其負責解包收到的Parcel並執行client端的請求的方法。
status_t BnCameraService::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch(code) {
……
case CONNECT: {
CHECK_INTERFACE(ICameraService, data, reply);
sp<ICameraClient> cameraClient =
interface_cast<ICameraClient>(data.readStrongBinder()); // 使用Camera的Binder物件生成Camera客戶代理BpCameraClient例項
int32_t cameraId = data.readInt32();
const String16 clientName = data.readString16();
int32_t clientUid = data.readInt32();
sp<ICamera> camera;
status_t status = connect(cameraClient, cameraId,
clientName, clientUid, /*out*/camera); // 將生成的BpCameraClient物件作為引數傳遞到CameraService的connect()函式中
reply->writeNoException();
reply->writeInt32(status); // 將BpCamera物件以IBinder的形式打包到Parcel中返回
if (camera != NULL) {
reply->writeInt32(1);
reply->writeStrongBinder(camera->asBinder());
} else {
reply->writeInt32(0);
}
return NO_ERROR;
} break;
……
}
}
主要的處理包括:
- 通過data中Camera的Binder物件生成Camera客戶代理BpCameraClient例項;
- 將生成的BpCameraClient物件作為引數傳遞到CameraService(/frameworks/av/services/camera /libcameraservice/CameraService.cpp)的connect()函式中,該函式會返回一個BpCamera例項;
- 將在上述例項物件以IBinder的形式打包到Parcel中返回。
最後,BpCamera例項是通過CameraService::connect()函式返回的。CameraService::connect()實現的核心是呼叫connectHelperLocked()函式根據HAL不同API的版本建立不同的client例項(早期版本中好像沒有connectHelperLocked()這個函式,但功能基本相似)。
status_t CameraService::connectHelperLocked(
/*out*/
sp<Client>& client,
/*in*/
const sp<ICameraClient>& cameraClient,
int cameraId,
const String16& clientPackageName,
int clientUid,
int callingPid,
int halVersion,
bool legacyMode) {
int facing = -1;
int deviceVersion = getDeviceVersion(cameraId, &facing);
if (halVersion < 0 || halVersion == deviceVersion) {
// Default path: HAL version is unspecified by caller, create CameraClient
// based on device version reported by the HAL.
switch(deviceVersion) {
case CAMERA_DEVICE_API_VERSION_1_0:
client = new CameraClient(this, cameraClient,
clientPackageName, cameraId,
facing, callingPid, clientUid, getpid(), legacyMode);
break;
case CAMERA_DEVICE_API_VERSION_2_0:
case CAMERA_DEVICE_API_VERSION_2_1:
case CAMERA_DEVICE_API_VERSION_3_0:
case CAMERA_DEVICE_API_VERSION_3_1:
case CAMERA_DEVICE_API_VERSION_3_2:
client = new Camera2Client(this, cameraClient,
clientPackageName, cameraId,
facing, callingPid, clientUid, getpid(), legacyMode);
break;
case -1:
ALOGE("Invalid camera id %d", cameraId);
return BAD_VALUE;
default:
ALOGE("Unknown camera device HAL version: %d", deviceVersion);
return INVALID_OPERATION;
}
} else {
// A particular HAL version is requested by caller. Create CameraClient
// based on the requested HAL version.
if (deviceVersion > CAMERA_DEVICE_API_VERSION_1_0 &&
halVersion == CAMERA_DEVICE_API_VERSION_1_0) {
// Only support higher HAL version device opened as HAL1.0 device.
client = new CameraClient(this, cameraClient,
clientPackageName, cameraId,
facing, callingPid, clientUid, getpid(), legacyMode);
} else {
// Other combinations (e.g. HAL3.x open as HAL2.x) are not supported yet.
ALOGE("Invalid camera HAL version %x: HAL %x device can only be"
" opened as HAL %x device", halVersion, deviceVersion,
CAMERA_DEVICE_API_VERSION_1_0);
return INVALID_OPERATION;
}
}
status_t status = connectFinishUnsafe(client, client->getRemote());
if (status != OK) {
// this is probably not recoverable.. maybe the client can try again
return status;
}
mClient[cameraId] = client;
LOG1("CameraService::connect X (id %d, this pid is %d)", cameraId,
getpid());
return OK;
}
可見,在CAMERA_DEVICE_API_VERSION_2_0之前使用CameraClient進行例項化,之後則採用Camera2Client進行例項化。以CameraClient為例,其initialize()函式如下:
status_t CameraClient::initialize(camera_module_t *module) {
int callingPid = getCallingPid();
status_t res;
LOG1("CameraClient::initialize E (pid %d, id %d)", callingPid, mCameraId);
// Verify ops permissions
res = startCameraOps();
if (res != OK) {
return res;
}
char camera_device_name[10];
snprintf(camera_device_name, sizeof(camera_device_name), "%d", mCameraId);
mHardware = new CameraHardwareInterface(camera_device_name);
res = mHardware->initialize(&module->common);
if (res != OK) {
ALOGE("%s: Camera %d: unable to initialize device: %s (%d)",
__FUNCTION__, mCameraId, strerror(-res), res);
mHardware.clear();
return res;
}
mHardware->setCallbacks(notifyCallback,
dataCallback,
dataCallbackTimestamp,
(void *)(uintptr_t)mCameraId);
// Enable zoom, error, focus, and metadata messages by default
enableMsgType(CAMERA_MSG_ERROR | CAMERA_MSG_ZOOM | CAMERA_MSG_FOCUS |
CAMERA_MSG_PREVIEW_METADATA | CAMERA_MSG_FOCUS_MOVE);
LOG1("CameraClient::initialize X (pid %d, id %d)", callingPid, mCameraId);
return OK;
}
上述函式中,主要注意以下流程:
加粗的程式碼CameraHardwareInterface新建了了一個Camera硬體介面,當然,camera_device_name為攝像頭裝置名;
- mHardware->initialize(&module->common)呼叫底層硬體的初始化方法;
- mHardware->setCallbacks將CamerService處的回撥函式註冊到HAL處。
- CameraHardwareInterface定義了Camera的硬體抽象特徵,由此進入到HAL。
四、HAL:CameraHardwareInterface
CameraHardwareInterface的作用在於連結Camera Server和V4L2,通過實現CameraHardwareInterface可以遮蔽不同的driver對Camera Server的影響。CameraHardwareInterface同樣虛擬繼承自RefBase。
class CameraHardwareInterface : public virtual RefBase {
public:
CameraHardwareInterface(const char *name)
{
mDevice = 0;
mName = name;
}
……
}
CameraHardwareInterface中包含了控制通道和資料通道,控制通道用於處理預覽和視訊獲取的開始/停止、拍攝照片、自動對焦等功能,資料通道通過回撥函式來獲得預覽、視訊錄製、自動對焦等資料。當需要支援新的硬體時就需要繼承於CameraHardwareInterface ,來實現對應的功能。CameraHardwareInterface提供的public方法如下:
CameraHardwareInterface
在前一節中,initialize()函式呼叫了mHardware->initialize和mHardware->setCallbacks,下面來看下CameraHardwareInterface.h對其的實現。
status_t initialize(hw_module_t *module)
{
ALOGI("Opening camera %s", mName.string());
camera_module_t *cameraModule = reinterpret_cast<camera_module_t *>(module);
camera_info info;
status_t res = cameraModule->get_camera_info(atoi(mName.string()), &info);
if (res != OK) return res;
int rc = OK;
if (module->module_api_version >= CAMERA_MODULE_API_VERSION_2_3 &&
info.device_version > CAMERA_DEVICE_API_VERSION_1_0) {
// Open higher version camera device as HAL1.0 device.
rc = cameraModule->open_legacy(module, mName.string(),
CAMERA_DEVICE_API_VERSION_1_0,
(hw_device_t **)&mDevice);
} else {
rc = CameraService::filterOpenErrorCode(module->methods->open(
module, mName.string(), (hw_device_t **)&mDevice));
}
if (rc != OK) {
ALOGE("Could not open camera %s: %d", mName.string(), rc);
return rc;
}
initHalPreviewWindow();
return rc;
}
在initialize()方法中,通過cameraModule->open_legacy開啟攝像頭模組,initHalPreviewWindow()用於初始化Preview的相關流opspreview_stream_ops,初始化hal的預覽視窗。
void initHalPreviewWindow()
{
mHalPreviewWindow.nw.cancel_buffer = __cancel_buffer;
mHalPreviewWindow.nw.lock_buffer = __lock_buffer;
mHalPreviewWindow.nw.dequeue_buffer = __dequeue_buffer;
mHalPreviewWindow.nw.enqueue_buffer = __enqueue_buffer;
mHalPreviewWindow.nw.set_buffer_count = __set_buffer_count;
mHalPreviewWindow.nw.set_buffers_geometry = __set_buffers_geometry;
mHalPreviewWindow.nw.set_crop = __set_crop;
mHalPreviewWindow.nw.set_timestamp = __set_timestamp;
mHalPreviewWindow.nw.set_usage = __set_usage;
mHalPreviewWindow.nw.set_swap_interval = __set_swap_interval;
mHalPreviewWindow.nw.get_min_undequeued_buffer_count =
__get_min_undequeued_buffer_count;
}
/** Set the notification and data callbacks */
void setCallbacks(notify_callback notify_cb,
data_callback data_cb,
data_callback_timestamp data_cb_timestamp,
void* user)
{
mNotifyCb = notify_cb;
mDataCb = data_cb;
mDataCbTimestamp = data_cb_timestamp;
mCbUser = user;
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->set_callbacks) {
mDevice->ops->set_callbacks(mDevice,
__notify_cb,
__data_cb,
__data_cb_timestamp,
__get_memory,
this);
}
}
set_callbacks中,__notify_cb、__data_cb、__data_cb_timestamp和__get_memory分別訊息回撥,資料回撥,時間戳回撥,以及記憶體相關操作的回撥。
以上通過簡略分析應用層呼叫Camera.open()之後在Framework、ART、Library以及HAL層的響應,來說明Android中Camera系統的整體架構,希望對讀者能有一定的幫