Redis中的LFU演算法
在Redis中的LRU演算法文中說到,LRU
有一個缺陷,在如下情況下:
~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|
會將資料D誤認為將來最有可能被訪問到的資料。
Redis
作者曾想改進LRU
演算法,但發現Redis
的LRU
演算法受制於隨機取樣數maxmemory_samples
,在maxmemory_samples
LRU
演算法效能,也就是說,LRU
演算法本身已經很難再進一步了。
於是,將思路回到原點,淘汰演算法的本意是保留那些將來最有可能被再次訪問的資料,而LRU
演算法只是預測最近被訪問的資料將來最有可能被訪問到。我們可以轉變思路,採用一種LFU(Least Frequently Used)
演算法,也就是最頻繁被訪問的資料將來最有可能被訪問到。在上面的情況中,根據訪問頻繁情況,可以確定保留優先順序:B>A>C=D。
Redis中的LFU思路
在LFU
演算法中,可以為每個key維護一個計數器。每次key被訪問的時候,計數器增大。計數器越大,可以約等於訪問越頻繁。
上述簡單演算法存在兩個問題:
- 在
LRU
演算法中可以維護一個雙向連結串列,然後簡單的把被訪問的節點移至連結串列開頭,但在LFU
中是不可行的,節點要嚴格按照計數器進行排序,新增節點或者更新節點位置時,時間複雜度可能達到O(N)。 - 只是簡單的增加計數器的方法並不完美。訪問模式是會頻繁變化的,一段時間內頻繁訪問的key一段時間之後可能會很少被訪問到,只增加計數器並不能體現這種趨勢。
第一個問題很好解決,可以借鑑LRU
實現的經驗,維護一個待淘汰key的pool。第二個問題的解決辦法是,記錄key最後一個被訪問的時間,然後隨著時間推移,降低計數器。
Redis
物件的結構如下:
typedef struct redisObject { unsigned type:4; unsigned encoding:4; unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or * LFU data (least significant 8 bits frequency * and most significant 16 bits access time). */ int refcount; void *ptr; } robj;
在LRU
演算法中,24 bits的lru
是用來記錄LRU time
的,在LFU
中也可以使用這個欄位,不過是分成16 bits與8 bits使用:
16 bits 8 bits
+----------------+--------+
+ Last decr time | LOG_C |
+----------------+--------+
高16 bits用來記錄最近一次計數器降低的時間ldt
,單位是分鐘,低8 bits記錄計數器數值counter
。
LFU配置
Redis
4.0之後為maxmemory_policy
淘汰策略添加了兩個LFU
模式:
volatile-lfu
:對有過期時間的key採用LFU
淘汰演算法allkeys-lfu
:對全部key採用LFU
淘汰演算法
還有2個配置可以調整LFU
演算法:
lfu-log-factor 10
lfu-decay-time 1
lfu-log-factor
可以調整計數器counter
的增長速度,lfu-log-factor
越大,counter
增長的越慢。
lfu-decay-time
是一個以分鐘為單位的數值,可以調整counter
的減少速度
原始碼實現
在lookupKey
中:
robj *lookupKey(redisDb *db, robj *key, int flags) { dictEntry *de = dictFind(db->dict,key->ptr); if (de) { robj *val = dictGetVal(de); /* Update the access time for the ageing algorithm. * Don't do it if we have a saving child, as this will trigger * a copy on write madness. */ if (server.rdb_child_pid == -1 && server.aof_child_pid == -1 && !(flags & LOOKUP_NOTOUCH)) { if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { updateLFU(val); } else { val->lru = LRU_CLOCK(); } } return val; } else { return NULL; } }
當採用LFU
策略時,updateLFU
更新lru
:
/* Update LFU when an object is accessed. * Firstly, decrement the counter if the decrement time is reached. * Then logarithmically increment the counter, and update the access time. */ void updateLFU(robj *val) { unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter); val->lru = (LFUGetTimeInMinutes()<<8) | counter; }
降低LFUDecrAndReturn
首先,LFUDecrAndReturn
對counter
進行減少操作:
/* If the object decrement time is reached decrement the LFU counter but * do not update LFU fields of the object, we update the access time * and counter in an explicit way when the object is really accessed. * And we will times halve the counter according to the times of * elapsed time than server.lfu_decay_time. * Return the object frequency counter. * * This function is used in order to scan the dataset for the best object * to fit: as we check for the candidate, we incrementally decrement the * counter of the scanned objects if needed. */ unsigned long LFUDecrAndReturn(robj *o) { unsigned long ldt = o->lru >> 8; unsigned long counter = o->lru & 255; unsigned long num_periods = server.lfu_decay_time ? LFUTimeElapsed(ldt) / server.lfu_decay_time : 0; if (num_periods) counter = (num_periods > counter) ? 0 : counter - num_periods; return counter; }
函式首先取得高16 bits的最近降低時間ldt
與低8 bits的計數器counter
,然後根據配置的lfu_decay_time
計算應該降低多少。
LFUTimeElapsed
用來計算當前時間與ldt
的差值:
/* Return the current time in minutes, just taking the least significant * 16 bits. The returned time is suitable to be stored as LDT (last decrement * time) for the LFU implementation. */ unsigned long LFUGetTimeInMinutes(void) { return (server.unixtime/60) & 65535; } /* Given an object last access time, compute the minimum number of minutes * that elapsed since the last access. Handle overflow (ldt greater than * the current 16 bits minutes time) considering the time as wrapping * exactly once. */ unsigned long LFUTimeElapsed(unsigned long ldt) { unsigned long now = LFUGetTimeInMinutes(); if (now >= ldt) return now-ldt; return 65535-ldt+now; }
具體是當前時間轉化成分鐘數後取低16 bits,然後計算與ldt
的差值now-ldt
。當ldt > now
時,預設為過了一個週期(16 bits,最大65535),取值65535-ldt+now
。
然後用差值與配置lfu_decay_time
相除,LFUTimeElapsed(ldt) / server.lfu_decay_time
,已過去n個lfu_decay_time
,則將counter
減少n,counter - num_periods
。
增長LFULogIncr
增長函式LFULogIncr
如下:
/* Logarithmically increment a counter. The greater is the current counter value * the less likely is that it gets really implemented. Saturate it at 255. */ uint8_t LFULogIncr(uint8_t counter) { if (counter == 255) return 255; double r = (double)rand()/RAND_MAX; double baseval = counter - LFU_INIT_VAL; if (baseval < 0) baseval = 0; double p = 1.0/(baseval*server.lfu_log_factor+1); if (r < p) counter++; return counter; }
counter
並不是簡單的訪問一次就+1,而是採用了一個0-1之間的p因子控制增長。counter
最大值為255。取一個0-1之間的隨機數r與p比較,當r<p
時,才增加counter
,這和比特幣中控制產出的策略類似。p取決於當前counter
值與lfu_log_factor
因子,counter
值與lfu_log_factor
因子越大,p越小,r<p
的概率也越小,counter
增長的概率也就越小。增長情況如下:
+--------+------------+------------+------------+------------+------------+
| factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
+--------+------------+------------+------------+------------+------------+
| 0 | 104 | 255 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 1 | 18 | 49 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 10 | 10 | 18 | 142 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 100 | 8 | 11 | 49 | 143 | 255 |
+--------+------------+------------+------------+------------+------------+
可見counter
增長與訪問次數呈現對數增長的趨勢,隨著訪問次數越來越大,counter
增長的越來越慢。
新生key策略
另外一個問題是,當建立新物件的時候,物件的counter
如果為0,很容易就會被淘汰掉,還需要為新生key設定一個初始counter
,createObject
:
robj *createObject(int type, void *ptr) {
robj *o = zmalloc(sizeof(*o));
o->type = type;
o->encoding = OBJ_ENCODING_RAW;
o->ptr = ptr;
o->refcount = 1;
/* Set the LRU to the current lruclock (minutes resolution), or
* alternatively the LFU counter. */
if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
o->lru = (LFUGetTimeInMinutes()<<8) | LFU_INIT_VAL;
} else {
o->lru = LRU_CLOCK();
}
return o;
}
counter
會被初始化為LFU_INIT_VAL
,預設5。
pool
pool演算法就與LRU
演算法一致了:
if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) || server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
計算idle
時有所不同:
} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) { /* When we use an LRU policy, we sort the keys by idle time * so that we expire keys starting from greater idle time. * However when the policy is an LFU one, we have a frequency * estimation, and we want to evict keys with lower frequency * first. So inside the pool we put objects using the inverted * frequency subtracting the actual frequency to the maximum * frequency of 255. */ idle = 255-LFUDecrAndReturn(o);
使用了255-LFUDecrAndReturn(o)
當做排序的依據。
參考連結
- Random notes on improving the Redis LRU algorithm
- Using Redis as an LRU cache