無聊系列 - 位元組跳動的三道編碼面試題的實現
阿新 • • 發佈:2019-10-19
國慶節後,自己的一個小圈子微信群的夥伴們發了一張圖片,是網上流傳的位元組跳動的面試題編碼,閒的無事就思索了下,發現都不難,都是對基礎的數學知識的考量。先上圖吧!
當然40分鐘,我也無法把任意兩題編碼完成,只是知道大概的解題思路,唯一能確定的,在面試規定時間內,第二題我是肯定可以在20分鐘內編碼完成。
題目一
基礎知識就是初中的平面直角座標系,解析思路:
- 計算總周長;
- 將各邊長的前後座標計算出來封裝好,第四步要使用;
- 根據K段值計算出平均分段後的長度;
- 然後迴圈K次,根據平均長度依次相加計算等分點的座標。
不多說,上程式碼:
先定義座標的Point類
class Point { float x; float y; public Point() { } public Point(float x, float y) { this.x = x; this.y = y; } public Point(Point point) { this(point.x, point.y); } @Override public String toString() { return "Point, x:" + x + " y:" + y; } }
N邊形的邊封裝類
class Line { Point begin; Point end; float length; public Line() { } public Line(Point begin, Point end, float length) { this.begin = begin; this.end = end; this.length = length; } }
現在上實現計算的類
這段程式碼第一個版本的時候,在正方形偶數等分的時候,座標點計算不準確,今晚上看著程式碼思考了10分鐘的樣子,稍微改動了下,暫時沒有這個bug了。其他的bug,期待大家一起發現,然後修復吧!
public class Polygon { /** * 計算邊的長度 * * @return */ private static float lineLength(Point a, Point b) { float length; if (a.x == b.x) { // 垂直線條 length = Math.abs(a.y - b.y); } else { length = Math.abs(a.x - b.x); } return length; } /** * 計算 周長 * * @return */ private static float totalSideLength(Point[] points, Line[] lines) { float side = 0; for (int i = 1; i < points.length; i++) { Point prev = points[i - 1]; Point point = points[i]; float length = lineLength(prev, point); side += length; lines[i - 1] = new Line(prev, point, length); if (i == points.length - 1) { length = lineLength(point, points[0]); side += length; lines[i] = new Line(point, points[0], length); } } return side; } public static Point[] division(Point[] points, int divisionNum) { Point[] divisionPoint = new Point[divisionNum]; // 計算周長 Line[] lines = new Line[points.length]; float side = totalSideLength(points, lines); // 等分長度 float divisionLength = side / divisionNum; int lineIndex = -1; float sumLength = 0; for (int i = 0; i < divisionNum; i++) { if (i == 0) { // 第一個等分點直接是起始點座標 divisionPoint[i] = new Point(points[0]); continue; } divisionPoint[i] = new Point(); float lineLength = divisionLength * i; while (true) { Line line; if (sumLength < lineLength) { lineIndex++; line = lines[lineIndex]; sumLength += line.length; } else line = lines[lineIndex]; if (sumLength >= lineLength) { float temp = sumLength - lineLength; if (line.begin.x == line.end.x) { // begin和end的座標點垂直 divisionPoint[i].x = line.begin.x; if (line.end.y > line.begin.y) divisionPoint[i].y = line.end.y - temp; else divisionPoint[i].y = line.end.y + temp; } else { // begin和end的座標點水平 divisionPoint[i].y = line.end.y; if (line.end.x > line.begin.x) divisionPoint[i].x = line.end.x - temp; else divisionPoint[i].x = line.end.x + temp; } break; } } } return divisionPoint; } private static void print(Point[] points) { for (int i = 0; i < points.length; i++) { System.out.println("第" + (i + 1) + "等分點, x:" + points[i].x + ",y:" + points[i].y); } } public static void main(String[] args) { Point[] points = new Point[] { new Point(0, 0), new Point(0, 1), new Point(1, 1), new Point(1, 0) }; Point[] divPoints = division(points, 8); print(divPoints); } }
題目二
解題思路:
對應位數的數字相加,永遠不會超過18,所以,我們就先把對應位置的和計算出來,然後再反覆迴圈找到大於9的數,向高位進位。
這個比較簡單,只是考察個位數的正整數加法永遠不大於18這個細節。
上程式碼:
public class LinkAddition { static class NumNode { public int num; public NumNode next; public NumNode() { } public NumNode(int num) { this.num = num; }; public NumNode(int num, NumNode next) { this(num); this.next = next; } } private static int length(NumNode num) { int length = 0; NumNode temp = num; while (temp != null) { length++; temp = temp.next; } return length; } private static NumNode calc(NumNode a, NumNode b, int aLength, int bLength) { NumNode aNode = a; NumNode bNode = b; NumNode result = new NumNode(); NumNode resultNode = result; // 計算b連結串列再a中的起始索引 int aStartIndex = aLength - bLength; for (int i = 0; i < aLength; i++) { if (i >= aStartIndex) { resultNode.num = aNode.num + bNode.num; bNode = bNode.next; } else resultNode.num = aNode.num; aNode = aNode.next; if (aNode != null) { resultNode.next = new NumNode(); resultNode = resultNode.next; } } return result; } public static NumNode addition(NumNode a, NumNode b) { NumNode result = null; // 計算位數 int aLength = length(a); int bLength = length(b); if (aLength > bLength) { result = calc(a, b, aLength, bLength); } else { result = calc(b, a, bLength, aLength); } boolean isGreater9 = true; while (isGreater9) { isGreater9 = false; NumNode node = result; while (node != null) { // 檢查是否有大於9的節點 if (node.num > 9) { isGreater9 = true; break; } node = node.next; } // 沒有大於9且需要進位的節點 if (!isGreater9) break; node = result; if (node.num > 9) { // 頭節點的內容跟大於9,需要進位 result = new NumNode(1, node); node.num = node.num - 10; } while (node.next != null) { if (node.next.num > 9) { node.num += 1; node.next.num = node.next.num - 10; } node = node.next; } } return result; } private static void print(NumNode num) { NumNode node = num; while (node != null) { System.out.print(node.num); node = node.next; } } public static void main(String[] args) { NumNode a = new NumNode(9); a.next = new NumNode(9, new NumNode(9)); NumNode b = new NumNode(9); // b.next = new NumNode(9, new NumNode(9)); NumNode result = addition(a, b); print(result); } }
題目三
這個我寫的第一個版本,只契合類那個舉例,然後瞬間就被我推翻類,最後坐下思考類10分鐘,把這個按照二維陣列的思路解析了。
先找到最高處,然後就以最高處為一個維度,做迴圈計算出水量,還是上程式碼吧:
public class Water { public static int waterNum(int[] steps) { int waterNum = 0; int max = steps[0]; for (int i = 1; i < steps.length; i++) { if (max < steps[i]) max = steps[i]; } for (int i = 0; i < max; i++) { int num = 0, index = 0; for (int n = 0; n < steps.length; n++) { if (steps[n] - i > 0) { if (num > 0) { waterNum += n - index - 1; } num = steps[n] - i; index = n; } } } return waterNum; } public static void main(String[] args) { int[] steps = new int[] { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 3, 0, 1 }; int water = waterNum(steps); System.out.println(water); } }
總結:
其實這幾題本身的知識點並不難,都是平時用到的,就看怎麼轉化為程式碼罷了。
第一題考察的直角座標系上怎麼計算邊長,然後根據均分等長從第一條邊挨著走,計算對應的座標,該知識點在初中就已學過。
第二題則是考察每位上的正整數加法到底最大能到多少,只要明白了這一點,把每一位上相加後,再統一做進位處理就可以了。
第三題的程式碼量是最少的,我的解題思路是二位陣列的方式, 也不算難。
&n