1. 程式人生 > >無聊系列 - 位元組跳動的三道編碼面試題的實現

無聊系列 - 位元組跳動的三道編碼面試題的實現

國慶節後,自己的一個小圈子微信群的夥伴們發了一張圖片,是網上流傳的位元組跳動的面試題編碼,閒的無事就思索了下,發現都不難,都是對基礎的數學知識的考量。先上圖吧!

當然40分鐘,我也無法把任意兩題編碼完成,只是知道大概的解題思路,唯一能確定的,在面試規定時間內,第二題我是肯定可以在20分鐘內編碼完成。

題目一

基礎知識就是初中的平面直角座標系,解析思路:

  1. 計算總周長;
  2. 將各邊長的前後座標計算出來封裝好,第四步要使用;
  3. 根據K段值計算出平均分段後的長度;
  4. 然後迴圈K次,根據平均長度依次相加計算等分點的座標。

不多說,上程式碼:

先定義座標的Point類

 

class Point {
        float x;
        float y;

        public Point() {
        }

        public Point(float x, float y) {
            this.x = x;
            this.y = y;
        }

        public Point(Point point) {
            this(point.x, point.y);
        }

        @Override
        public String toString() {
            return "Point, x:" + x + " y:" + y;
        }
    }

 

 

 

N邊形的邊封裝類

class Line {
        Point begin;
        Point end;
        float length;

        public Line() {

        }

        public Line(Point begin, Point end, float length) {
            this.begin = begin;
            this.end = end;
            this.length = length;
        }
    }

 

現在上實現計算的類

這段程式碼第一個版本的時候,在正方形偶數等分的時候,座標點計算不準確,今晚上看著程式碼思考了10分鐘的樣子,稍微改動了下,暫時沒有這個bug了。其他的bug,期待大家一起發現,然後修復吧!

public class Polygon {

    /**
     * 計算邊的長度
     * 
     * @return
     */
    private static float lineLength(Point a, Point b) {
        float length;

        if (a.x == b.x) {
            // 垂直線條
            length = Math.abs(a.y - b.y);
        } else {
            length = Math.abs(a.x - b.x);
        }

        return length;
    }

    /**
     * 計算 周長
     * 
     * @return
     */
    private static float totalSideLength(Point[] points, Line[] lines) {
        float side = 0;

        for (int i = 1; i < points.length; i++) {
            Point prev = points[i - 1];
            Point point = points[i];

            float length = lineLength(prev, point);

            side += length;
            lines[i - 1] = new Line(prev, point, length);

            if (i == points.length - 1) {
                length = lineLength(point, points[0]);

                side += length;
                lines[i] = new Line(point, points[0], length);
            }
        }

        return side;
    }

    public static Point[] division(Point[] points, int divisionNum) {
        Point[] divisionPoint = new Point[divisionNum];

        // 計算周長
        Line[] lines = new Line[points.length];
        float side = totalSideLength(points, lines);

        // 等分長度
        float divisionLength = side / divisionNum;

        int lineIndex = -1;
        float sumLength = 0;

        for (int i = 0; i < divisionNum; i++) {
            if (i == 0) {
                // 第一個等分點直接是起始點座標
                divisionPoint[i] = new Point(points[0]);
                continue;
            }

            divisionPoint[i] = new Point();
            float lineLength = divisionLength * i;

            while (true) {
                Line line;
                if (sumLength < lineLength) {
                    lineIndex++;
                    line = lines[lineIndex];
                    sumLength += line.length;
                } else
                    line = lines[lineIndex];

                if (sumLength >= lineLength) {
                    float temp = sumLength - lineLength;

                    if (line.begin.x == line.end.x) {
                        // begin和end的座標點垂直
                        divisionPoint[i].x = line.begin.x;

                        if (line.end.y > line.begin.y)
                            divisionPoint[i].y = line.end.y - temp;
                        else
                            divisionPoint[i].y = line.end.y + temp;
                    } else {
                        // begin和end的座標點水平
                        divisionPoint[i].y = line.end.y;

                        if (line.end.x > line.begin.x)
                            divisionPoint[i].x = line.end.x - temp;
                        else
                            divisionPoint[i].x = line.end.x + temp;
                    }
                    
                    break;
                }
            }
        }

        return divisionPoint;
    }

    private static void print(Point[] points) {
        for (int i = 0; i < points.length; i++) {
            System.out.println("第" + (i + 1) + "等分點, x:" + points[i].x + ",y:" + points[i].y);
        }
    }

    public static void main(String[] args) {
        Point[] points = new Point[] { new Point(0, 0), new Point(0, 1), new Point(1, 1), new Point(1, 0) };

        Point[] divPoints = division(points, 8);

        print(divPoints);
    }
}

 

 

題目二

 

解題思路:

對應位數的數字相加,永遠不會超過18,所以,我們就先把對應位置的和計算出來,然後再反覆迴圈找到大於9的數,向高位進位。

這個比較簡單,只是考察個位數的正整數加法永遠不大於18這個細節。

上程式碼:

public class LinkAddition {
    static class NumNode {
        public int num;
        public NumNode next;

        public NumNode() {
        }

        public NumNode(int num) {
            this.num = num;
        };

        public NumNode(int num, NumNode next) {
            this(num);
            this.next = next;
        }
    }

    private static int length(NumNode num) {
        int length = 0;

        NumNode temp = num;
        while (temp != null) {
            length++;
            temp = temp.next;
        }

        return length;
    }

    private static NumNode calc(NumNode a, NumNode b, int aLength, int bLength) {
        NumNode aNode = a;
        NumNode bNode = b;

        NumNode result = new NumNode();
        NumNode resultNode = result;

        // 計算b連結串列再a中的起始索引
        int aStartIndex = aLength - bLength;

        for (int i = 0; i < aLength; i++) {
            if (i >= aStartIndex) {
                resultNode.num = aNode.num + bNode.num;
                bNode = bNode.next;
            } else
                resultNode.num = aNode.num;

            aNode = aNode.next;
            if (aNode != null) {
                resultNode.next = new NumNode();
                resultNode = resultNode.next;
            }
        }

        return result;
    }

    public static NumNode addition(NumNode a, NumNode b) {
        NumNode result = null;

        // 計算位數
        int aLength = length(a);
        int bLength = length(b);

        if (aLength > bLength) {
            result = calc(a, b, aLength, bLength);
        } else {
            result = calc(b, a, bLength, aLength);
        }

        boolean isGreater9 = true;

        while (isGreater9) {
            isGreater9 = false;
            NumNode node = result;

            while (node != null) {
                // 檢查是否有大於9的節點
                if (node.num > 9) {
                    isGreater9 = true;
                    break;
                }

                node = node.next;
            }

            // 沒有大於9且需要進位的節點
            if (!isGreater9)
                break;
            
            node = result;
            
            if (node.num > 9) {
                // 頭節點的內容跟大於9,需要進位
                result = new NumNode(1, node);

                node.num = node.num - 10;
            }

            while (node.next != null) {
                if (node.next.num > 9) {
                    node.num += 1;
                    node.next.num = node.next.num - 10;
                }
                node = node.next;
            }
        }

        return result;
    }

    private static void print(NumNode num) {
        NumNode node = num;
        while (node != null) {
            System.out.print(node.num);
            node = node.next;
        }
    }

    public static void main(String[] args) {
        NumNode a = new NumNode(9);
        a.next = new NumNode(9, new NumNode(9));

        NumNode b = new NumNode(9);
        // b.next = new NumNode(9, new NumNode(9));

        NumNode result = addition(a, b);

        print(result);
    }
}

 

題目三

 

這個我寫的第一個版本,只契合類那個舉例,然後瞬間就被我推翻類,最後坐下思考類10分鐘,把這個按照二維陣列的思路解析了。

先找到最高處,然後就以最高處為一個維度,做迴圈計算出水量,還是上程式碼吧:

 

public class Water {
    public static int waterNum(int[] steps) {
        int waterNum = 0;

        int max = steps[0];
        for (int i = 1; i < steps.length; i++) {
            if (max < steps[i])
                max = steps[i];
        }

        for (int i = 0; i < max; i++) {
            int num = 0, index = 0;

            for (int n = 0; n < steps.length; n++) {
                if (steps[n] - i > 0) {
                    if (num > 0) {
                        waterNum += n - index - 1;
                    }

                    num = steps[n] - i;
                    index = n;
                }
            }
        }

        return waterNum;
    }

    public static void main(String[] args) {
        int[] steps = new int[] { 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 3, 0, 1 };
        int water = waterNum(steps);

        System.out.println(water);
    }
}

 

總結:

其實這幾題本身的知識點並不難,都是平時用到的,就看怎麼轉化為程式碼罷了。

第一題考察的直角座標系上怎麼計算邊長,然後根據均分等長從第一條邊挨著走,計算對應的座標,該知識點在初中就已學過。

第二題則是考察每位上的正整數加法到底最大能到多少,只要明白了這一點,把每一位上相加後,再統一做進位處理就可以了。

第三題的程式碼量是最少的,我的解題思路是二位陣列的方式, 也不算難。

&n