Spring Cloud第九篇 | 分散式服務跟蹤Sleuth
本文是Spring Cloud專欄的第九篇文章,瞭解前八篇文章內容有助於更好的理解本文:
-
Spring Cloud第一篇 | Spring Cloud前言及其常用元件介紹概覽
-
Spring Cloud第二篇 | 使用並認識Eureka註冊中心
-
Spring Cloud第三篇 | 搭建高可用Eureka註冊中心
-
Spring Cloud第四篇 | 客戶端負載均衡Ribbon
-
Spring Cloud第五篇 | 服務熔斷Hystrix
-
Spring Cloud第六篇 | Hystrix儀表盤監控Hystrix Dashboard
-
Spring Cloud第七篇 | 宣告式服務呼叫Feign
-
Spring Cloud第八篇 | Hystrix叢集監控Turbin
一、Sleuth前言
隨著業務的發展,系統規模也會變得越來越大,各微服務間的呼叫關係也變得越來越錯綜複雜。通常一個由客戶端發起的請求在後端系統中會經過多個不同的微服務呼叫來協同產生最後的請求結果,在複雜的微服務架構系統中,幾乎每一個前端請求都會形成一條複雜的分散式服務呼叫鏈路,在每條鏈路中任何一個依賴服務出現延遲過高或錯誤的時候都有可能引起請求最後的失敗。這時候, 對於每個請求,全鏈路呼叫的跟蹤就變得越來越重要,通過實現對請求呼叫的跟蹤可以幫助我們快速發現錯誤根源以及監控分析每條請求鏈路上的效能瓶頸等。
上面所述的分散式服務跟蹤問題, Spring Cloud Sleuth提供了一套完整的解決方案,下面將介紹Spring Cloud Sleuth的應用
二、Sleuth快速入門
1、為了保持其他模組的整潔性,重新搭建一個消費者(springcloud-consumer-sleuth),提供者(springcloud-consumer-sleuth),消費者和提供者都是和前面所用的都一樣沒有什麼區別,註冊中心還是使用前面案例的註冊中心(springcloud-eureka-server/8700),詳細檢視案例原始碼。
2、完成以上工作之後,我們為服務提供者和服務消費者新增跟蹤功能,通過Spring Cloud Sleuth的封裝,我們為應用增加服務跟蹤能力的操作非常方便,只需要在服務提供者和服務消費者增加spring-cloud-starter-sleuth依賴即可
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-sleuth</artifactId> </dependency>
3、訪問消費者介面,然後檢視控制檯日誌顯示
消費者(springcloud-consumer-sleuth)列印的日誌
2019-12-05 12:30:20.178 INFO [springcloud-consumer-sleuth,f6fb983680aab32b,f6fb983680aab32b,false] 8992 --- [nio-9090-exec-1] c.s.controller.SleuthConsumerController : === consumer hello ===
提供者(springcloud-provider-sleuth)列印的日誌
2019-12-05 12:30:20.972 INFO [springcloud-provider-sleuth,f6fb983680aab32b,c70932279d3b3a54,false] 788 --- [nio-8080-exec-1] c.s.controller.SleuthProviderController : === provider hello ===
從上面的控制檯輸出內容中,我們可以看到多了一些形如 [springcloud-consumer-sleuth,f6fb983680aab32b,c70932279d3b3a54,false]的日誌資訊,而這些元素正是實現分散式服務跟蹤的重要組成部分,每個值的含義如下所述:
-
第一個值: springcloud-consumer-sleuth,它記錄了應用的名稱,也就是application properties 中spring.application.name引數配置的屬性
-
第二個值:f6fb983680aab32b, Spring Cloud Sleuth生成的一個ID,稱為Trace ID, 它用來標識一條請求鏈路。一條請求鏈路中包含一個Trace ID,多個Span ID
-
第三個值:c70932279d3b3a54, Spring Cloud Sleuth生成的另外一個ID,稱為Span ID,它表示一個基本的工作單元,比如傳送一個HTTP請求
-
第四個值: false,表示是否要將該資訊輸出到Zipkin等服務中來收集和展示。上面四個值中的Trace ID和Span ID是Spring Cloud Sleuth實現分散式服務跟蹤的核心,在一次服務請求鏈路的呼叫過程中,會保持並傳遞同一個Trace ID,從而將整個分佈於不同微服務程序中的請求跟蹤資訊串聯起來。以上面輸出內容為例springcloud-consumer-sleuth和springcloud-provider-sleuth同屬於一個前端服務請求資源,所以他們的Trace ID是相同的,處於同一條請求鏈路中。
三、跟蹤原理
分散式系統中的服務跟蹤在理論上並不複雜,主要包括下面兩個關鍵點:
-
為了實現請求跟蹤,當請求傳送到分散式系統的入口端點時,只需要服務跟蹤框架為該請求建立一個唯一的跟蹤標識,同時在分散式系統內部流轉的時候,框架始終保持傳遞該唯一標識,直到返回給請求方為止,這個唯一標識就是前文中提到的Trace ID。通過Trace ID的記錄,我們就能將所有請求過程的日誌關聯起來
-
為了統計各處理單元的時間延遲,當請求到達各個服務元件時,或是處理邏輯到達某個狀態時,也通過一個唯一標識來標記它的開始、具體過程以及結束,該標識就是前面提到的Span ID。對於每個Span來說,它必須有開始和結束兩個節點,通過記錄開始Span和結束Span的時間戳,就能統計出該Span的時間延遲,除了時間 戳記錄之外,它還可以包含一些其他元資料,比如事件名稱、請求資訊等
在【二、sleuth快速入門】示例中,我們輕鬆實現了日誌級別的跟蹤資訊接入,這完全歸功於spring-cloud-starter-sleuth元件的實現,在SpringBoot應用中通過在工程中引入spring-cloud-starter-sleuth依賴之後,他會自動為當前應用構建起各通訊通道的跟蹤機制,比如:
-
通過RabbitMQ、Kafka(或者其他任何Spring Cloud Stream繫結器實現的訊息中介軟體)傳遞的請求
-
通過Zuul代理傳遞的請求
-
通過RestTemplate發起的請求
在【二、sleuth快速入門】示例中,由於springcloud-consumer-sleuth對springcloud-provider-sleuth發起的請求是通過RestTemplate實現的,所以spring-cloud-starter-sleuth元件會對該請求進行處理。在傳送到springcloud-provider-sleuth之前,Sleuth會在該請求的Header中增加實現跟蹤需要的重要資訊,主要有下面這幾個(更多關於頭資訊的定義可以通過檢視org.springframework.cloud.sleuth.Span的原始碼獲取)。
-
X-B3-TraceId:一條請求鏈路( Trace)的唯一標識,必需的值。
-
X-B3- SpanId:一個工作單元(Span)的唯一標識,必需的值。
-
X-B3- ParentSpanId:標識當前工作單元所屬的上一個工作單元, Root Span(請求鏈路的第一個工作單元)的該值為空。
-
X-B3-Sampled:是否被抽樣輸出的標誌,1表示需要被輸出,0表示不需要被輸出。
-
X-B3-Name:工作單元的名稱
可以通過對springcloud-provider-sleuth的實現做一些修改來輸出這些頭資訊,具體如下:
private final Logger logger = Logger.getLogger(SleuthProviderController.class.getName()); @RequestMapping("/hello") public String hello(HttpServletRequest request){ logger.info("=== provider hello ===,Traced={"+request.getHeader("X-B3-TraceId")+"},SpanId={"+request.getHeader("X-B3- SpanId")+"}"); return "Trace"; }
通過上面的改造,再次重啟案例,然後訪問我們檢視日誌,可以看到提供者輸出了正在處理的TraceId和SpanId資訊。
消費者(springcloud-consumer-sleuth)列印的日誌
2019-12-05 13:15:01.457 INFO [springcloud-consumer-sleuth,41697d7fa118c150,41697d7fa118c150,false] 10036 --- [nio-9090-exec-2] c.s.controller.SleuthConsumerController : === consumer hello ===
提供者(springcloud-provider-sleuth)列印的日誌
2019-12-05 13:15:01.865 INFO [springcloud-provider-sleuth,41697d7fa118c150,863a1245c86b580e,false] 11088 --- [nio-8080-exec-1] c.s.controller.SleuthProviderController : === provider hello ===,Traced={41697d7fa118c150},SpanId={863a1245c86b580e}
四、抽樣收集
通過Trace ID和Span ID已經實現了對分散式系統中的請求跟蹤,而記錄的跟蹤資訊最終會被分析系統收集起來,並用來實現對分散式系統的監控和分析功能,比如,預警延遲過長的請求鏈路、查詢請求鏈路的呼叫明細等。此時,我們在對接分析系統時就會碰到個問題:分析系統在收集跟蹤資訊的時候,需要收集多少跟蹤資訊才合適呢?
理論上來說,我們收集的跟蹤資訊越多就可以越好地反映出系統的實際執行情況,並給出更精準的預警和分析。但是在高併發的分散式系統執行時,大量的請求呼叫會產生海量的跟蹤日誌資訊,如果收集過多的跟蹤資訊將會對整個分散式系統的效能造成一定的影響,同時儲存大量的日誌資訊也需要不少的儲存開銷。所以,在Sleuth中採用了抽象收集的方式來為跟蹤資訊打上收集標識,也就是我們之前在日誌資訊中看到的第4個布林型別的值,他代表了該資訊是否被後續的跟蹤資訊收集器獲取和儲存。
public abstract class Sampler { /** * Returns true if the trace ID should be measured. * * @param traceId The trace ID to be decided on, can be ignored */ public abstract boolean isSampled(long traceId); }
通過實現isSampled方法, Spring Cloud Sleuth會在產生跟蹤資訊的時候呼叫它來為跟蹤資訊生成是否要被收集的標誌。需要注意的是,即使isSampled返回了false,它僅代表該跟蹤資訊不被輸出到後續對接的遠端分析系統(比如Zipkin中,對於請求的跟蹤活動依然會進行,所以我們在日誌中還是能看到收集標識為fase的記錄。
預設情況下, Sleuth會使用SamplerProperties實現的抽樣策略,以請求百分比的方式配置和收集跟蹤資訊。我們可以通過在application.yml中配置下面的引數對其百分比值進行設定,它的預設值為0.1,代表收集10%的請求跟蹤資訊。
spring: sleuth: sampler: probability: 0.1
在開發除錯期間,通常會收集全部跟蹤資訊並輸出到遠端倉庫,我們可以將其值設定為1,或者也可以注入Sampler物件SamplerProperties策略,比如
@Bean public Sampler defaultSampler() { return Sampler.ALWAYS_SAMPLE; }
由於跟蹤日誌資訊資料的價值往往僅在最近一段時間內非常有用,比如一週。那麼我們在設計抽樣策略時,主要考慮在不對系統造成明顯效能影響的情況下,以在日誌保留時間窗內充分利用儲存空間的原則來實現抽樣策略。
五、與Zipkin整合
由於日誌檔案都離散地儲存在各個服務例項的檔案系之上,僅通過檢視日誌資訊檔案來分我們的請求鏈路依然是一件相當麻煩的事情,所以我們需要一些工具來幫助集中收集、儲存和搜尋這些跟蹤資訊,比如ELK日誌平臺,雖然通過ELK平臺提供的收集、儲存、搜尋等強大功能,我們對跟蹤資訊的管理和使用已經變得非常便利。但是在ELK平臺中的資料分析維度缺少對請求鏈路中各階段時間延遲的關注,很多時候我們追溯請求鏈路的一個原因是為了找出整個呼叫鏈路中出現延遲過高的瓶頸源,或為了實現對分散式系統做延遲監控等與時間消耗相關的需求,這時候類似ELK這樣的日誌分析系統就顯得有些乏力了。對於這樣的問題,我們就可以引入Zipkin來得以輕鬆解決。
Zipkin是Twitter的一個開源專案,它基於Google Dapper實現。我們可以使用它來收集各個伺服器上請求鏈路的跟蹤資料,並通過它提供的REST API介面來輔助査詢跟蹤資料以實現對分散式系統的監控程式,從而及時發現系統中出現的延遲升高問題並找出系統 效能瓶頸的根源。除了面向開發的API介面之外,它還提供了方便的UI元件來幫助我們直觀地搜尋跟蹤資訊和分析請求鏈路明細,比如可以査詢某段時間內各使用者請求的處理時間等。
下圖展示了Zipkin的基礎架構,他主要由4個核心組成:
-
Collector:收集器元件,它主要處理從外部系統傳送過來的跟蹤資訊,將這些資訊轉換為 Zipkin內部處理的Span格式,以支援後續的儲存、分析、展示等功能。
-
Storage:儲存元件,它主要處理收集器接收到的跟蹤資訊,預設會將這些資訊儲存在記憶體中。我們也可以修改此儲存策略,通過使用其他儲存元件將跟蹤資訊儲存到資料庫中。
-
RESTful API:API元件,它主要用來提供外部訪問介面。比如給客戶端展示跟蹤資訊,或是外接系統訪問以實現監控等。
-
Web UI:UI元件,基於AP元件實現的上層應用。通過UI元件,使用者可以方便而又直觀地查詢和分析跟蹤資訊。
1、構建server-zipkin
在Spring Cloud為F版本的時候,已經不需要自己構建Zipkin Server了,只需要下載jar即可,下載地址:https://dl.bintray.com/openzipkin/maven/io/zipkin/zipkin-server/
Zipkin的github地址:https://github.com/openzipkin
2、下載完成jar 包之後,需要執行jar,如下
java -jar zipkin-server-2.10.1-exec.jar訪問瀏覽器http://localhost:9411,如圖我們可以看到zipkin的管理介面
3、為應用引入和配置Zipkin服務
我們需要對應用做一些配置,以實現將跟蹤資訊輸出到Zipkin Server。我們使用【二、sleuth快速入門】中實現的消費者(springcloud-consumer-sleuth),提供者(springcloud-provider-sleuth)為例,對他們進行改造,都加入整合Zipkin的依賴
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-zipkin</artifactId> </dependency>
4、在消費者(springcloud-consumer-sleuth),提供者(springcloud-provider-sleuth)中增加Zipkin Server的配置資訊,具體資訊如下所示,預設是連線地址為:http://localhost:9411
spring: zipkin: base-url: http://localhost:9411
5、測試與分析
到這裡我們已經完成了配置Zipkin Server的所有基本工作,然後訪問幾次消費者介面http://localhost:9090/consumer/hello,當在日誌中出現跟蹤資訊的最後一個值為true的時候,說明該跟蹤資訊會輸出給Zipkin Server,如下日誌
2019-12-05 15:47:25.600 INFO [springcloud-consumer-sleuth,cbdbbebaf32355ab,cbdbbebaf32355ab,false] 8564 --- [nio-9090-exec-9] c.s.controller.SleuthConsumerController : === consumer hello === 2019-12-05 15:47:27.483 INFO [springcloud-consumer-sleuth,8f332a4da3c05f62,8f332a4da3c05f62,false] 8564 --- [nio-9090-exec-6] c.s.controller.SleuthConsumerController : === consumer hello === 2019-12-05 15:47:42.127 INFO [springcloud-consumer-sleuth,61b922906800ac60,61b922906800ac60,true] 8564 --- [nio-9090-exec-2] c.s.controller.SleuthConsumerController : === consumer hello === 2019-12-05 15:47:42.457 INFO [springcloud-consumer-sleuth,1acae9ebecc4d36d,1acae9ebecc4d36d,false] 8564 --- [nio-9090-exec-4] c.s.controller.SleuthConsumerController : === consumer hello === 2019-12-05 15:47:42.920 INFO [springcloud-consumer-sleuth,b2db9e00014ceb88,b2db9e00014ceb88,false] 8564 --- [nio-9090-exec-7] c.s.controller.SleuthConsumerController : === consumer hello === 2019-12-05 15:47:43.457 INFO [springcloud-consumer-sleuth,ade4d5a7d97ca16b,ade4d5a7d97ca16b,false] 8564 --- [nio-9090-exec-9] c.s.controller.SleuthConsumerController : === consumer hello ===
所以此時可以在Zipkin Server的管理介面中選擇合適的查詢條件,單擊Find Traces按鈕,就可以查詢出剛才在日誌中出現的跟蹤資訊了(也可以根據日誌資訊中的Treac ID,在頁面右上角的輸入框中來搜尋),頁面如下所示:
點選下方springcloud-consumer-sleuth端點的跟蹤資訊,還可以得到Sleuth 跟蹤到的詳細資訊,其中包括我們關注的請求時間消耗等。
點選導航欄中的《依賴分析》選單,還可以檢視Zipkin Server根據跟蹤資訊分析生成的系統請求鏈路依賴關係圖,如下所示
六、Zipkin將資料儲存到ElasticSearch中
在【五、與Zipkin整合】中鏈路收集的資料預設儲存在Zipkin服務的記憶體中,Zipkin服務一重啟這些資料就沒了,在開發環境中我們圖方便省方便可以直接將資料儲存到記憶體中,但是在生產環境,我們需要將這些資料持久化。我們可以將其儲存在MySQL中,實際使用中資料量可能會比較大,所以MySQL並不是一種很好的選擇,可以選擇用Elasticsearch來儲存資料,Elasticsearch在搜尋方面有先天的優勢。
1、上面幾個步驟使用的 zipkin-server-2.10.1-exec.jar 是以前下載的,再此使用的zipkin server版本為2.19.2,下載地址:https://dl.bintray.com/openzipkin/maven/io/zipkin/zipkin-server/
2、zipkin-server-2.19.2-exec.jar 版本僅支援Elasticsearch5-7.x版本,注意版本對應,自行上elastic官網下載安裝Elasticsearch5-7.x版本,ES服務準備就緒完成之後。
3、啟動zipkin服務命令如下:
java -DSTORAGE_TYPE=elasticsearch -DES_HOSTS=http://47.112.11.147:9200 -jar zipkin-server-2.19.2-exec.jar
另外還有一些其它可配置引數,具體參考:https://github.com/openzipkin/zipkin/tree/master/zipkin-server#elasticsearch-storage
* `ES_HOSTS`: A comma separated list of elasticsearch base urls to connect to ex. http://host:9200. Defaults to "http://localhost:9200". * `ES_PIPELINE`: Indicates the ingest pipeline used before spans are indexed. No default. * `ES_TIMEOUT`: Controls the connect, read and write socket timeouts (in milliseconds) for Elasticsearch Api. Defaults to 10000 (10 seconds) * `ES_INDEX`: The index prefix to use when generating daily index names. Defaults to zipkin. * `ES_DATE_SEPARATOR`: The date separator to use when generating daily index names. Defaults to '-'. * `ES_INDEX_SHARDS`: The number of shards to split the index into. Each shard and its replicas are assigned to a machine in the cluster. Increasing the number of shards and machines in the cluster will improve read and write performance. Number of shards cannot be changed for existing indices, but new daily indices will pick up changes to the setting. Defaults to 5. * `ES_INDEX_REPLICAS`: The number of replica copies of each shard in the index. Each shard and its replicas are assigned to a machine in the cluster. Increasing the number of replicas and machines in the cluster will improve read performance, but not write performance. Number of replicas can be changed for existing indices. Defaults to 1. It is highly discouraged to set this to 0 as it would mean a machine failure results in data loss. * `ES_USERNAME` and `ES_PASSWORD`: Elasticsearch basic authentication, which defaults to empty string. Use when X-Pack security (formerly Shield) is in place. * `ES_HTTP_LOGGING`: When set, controls the volume of HTTP logging of the Elasticsearch Api. Options are BASIC, HEADERS, BODY
4、我們修改springcloud-provider-sleuth,springcloud-consumer-sleuth的application.yml檔案將抽樣概率修改為1,方便測試
spring: sleuth: sampler: probability: 1
5、然後訪問http://localhost:9090/consumer/hello介面幾次,再次訪問kibana可以看到索引已經建立了
6、可以看到裡面已經儲存資料了
7、訪問zipkin可以看到資訊
8、但是依賴中沒有任何資訊
9、zipkin會在ES中建立以zipkin開頭日期結尾的索引,並且預設以天為單位分割,使用ES儲存模式時,zipkin中的依賴資訊會無法顯示,通過zipkin官網可以看到,我們需要通過zipkin-dependencies工具包計算
10、zipkin-dependencies生成依賴鏈
zipkin-dependencies基於spark job來生成全域性的呼叫鏈,此處下載
zipkin-dependencies的版本為2.4.1
github地址:https://github.com/openzipkin/zipkin-dependencies
下載地址:https://dl.bintray.com/openzipkin/maven/io/zipkin/dependencies/zipkin-dependencies/
11、下載完成之後啟動
這個jar包就不要再windows上啟動了,啟動不了,啟動到你懷疑人生。在linux上執行
官方網文件給了個Linux案例:
STORAGE_TYPE=cassandra3 java -jar zipkin-dependencies.jar `date -u -d '1 day ago' +%F`
STORAGE_TYPE為儲存型別,我門這裡使用的是ES所以修改為elasticsearch,後面的date引數命令可以用來顯示或設定系統的日期與時間,不瞭解的自行百度。
啟動命令為:
ZIPKIN_LOG_LEVEL=DEBUG ES_NODES_WAN_ONLY=true STORAGE_TYPE=elasticsearch ES_HOSTS=http://47.112.11.147:9200 java -Xms256m -Xmx1024m -jar zipkin-dependencies-2.4.1.jar `date -u -d '1 day ago' +%F`
下載完成後通過上述命令啟動zipkin-dependencies,這裡要注意的是程式只會根據當日的zipkin資料實時計算一次依賴關係,我們是昨天(2019-12-17)收集到ES的資料,所以今天 (2019-12-18)我們在啟動命令中指定前一天,就能生成依賴資料以索引zipkin:dependency-2019-12-17方式存入ES中,然後就退出了(Done),因此要做到實時更新依賴的話需要週期性執行zipkin-dependencies,例如使用Linux中的crontab定時排程等等。
執行後日志如下:
[root@VM_0_8_centos local]# ZIPKIN_LOG_LEVEL=DEBUG ES_NODES_WAN_ONLY=true STORAGE_TYPE=elasticsearch ES_HOSTS=http://47.112.11.147:9200 java -Xms256m -Xmx1024m -jar zipkin-dependencies-2.4.1.jar `date -u -d '1 day ago' +%F` 19/12/18 21:44:10 WARN Utils: Your hostname, VM_0_8_centos resolves to a loopback address: 127.0.0.1; using 172.21.0.8 instead (on interface eth0) 19/12/18 21:44:10 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address 19/12/18 21:44:10 DEBUG ElasticsearchDependenciesJob: Spark conf properties: spark.ui.enabled=false 19/12/18 21:44:10 DEBUG ElasticsearchDependenciesJob: Spark conf properties: es.index.read.missing.as.empty=true 19/12/18 21:44:10 DEBUG ElasticsearchDependenciesJob: Spark conf properties: es.nodes.wan.only=true 19/12/18 21:44:10 DEBUG ElasticsearchDependenciesJob: Spark conf properties: es.net.ssl.keystore.location= 19/12/18 21:44:10 DEBUG ElasticsearchDependenciesJob: Spark conf properties: es.net.ssl.keystore.pass= 19/12/18 21:44:10 DEBUG ElasticsearchDependenciesJob: Spark conf properties: es.net.ssl.truststore.location= 19/12/18 21:44:10 DEBUG ElasticsearchDependenciesJob: Spark conf properties: es.net.ssl.truststore.pass= 19/12/18 21:44:10 INFO ElasticsearchDependenciesJob: Processing spans from zipkin:span-2019-12-17/span 19/12/18 21:44:10 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 19/12/18 21:44:12 WARN Java7Support: Unable to load JDK7 types (annotations, java.nio.file.Path): no Java7 support added 19/12/18 21:44:13 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:13 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:13 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:16 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:16 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:16 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:16 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:17 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:17 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:17 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:17 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:17 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:17 WARN Resource: Detected type name in resource [zipkin:span-2019-12-17/span]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:18 DEBUG DependencyLinker: building trace tree: traceId=a5253479e359638b 19/12/18 21:44:18 DEBUG DependencyLinker: traversing trace tree, breadth-first 19/12/18 21:44:18 DEBUG DependencyLinker: processing {"traceId":"a5253479e359638b","id":"a5253479e359638b","kind":"SERVER","name":"get /consumer/hello","timestamp":1576591155280041,"duration":6191,"localEndpoint":{"serviceName":"springcloud-consumer-sleuth","ipv4":"192.168.0.104"},"remoteEndpoint":{"ipv6":"::1","port":62085},"tags":{"http.method":"GET","http.path":"/consumer/hello","mvc.controller.class":"SleuthConsumerController","mvc.controller.method":"hello"}} 19/12/18 21:44:18 DEBUG DependencyLinker: root's client is unknown; skipping 19/12/18 21:44:18 DEBUG DependencyLinker: processing {"traceId":"a5253479e359638b","parentId":"a5253479e359638b","id":"8d6b8fb1bbb4f48c","kind":"CLIENT","name":"get","timestamp":1576591155281192,"duration":3999,"localEndpoint":{"serviceName":"springcloud-consumer-sleuth","ipv4":"192.168.0.104"},"tags":{"http.method":"GET","http.path":"/provider/hello"}} 19/12/18 21:44:18 DEBUG DependencyLinker: processing {"traceId":"a5253479e359638b","parentId":"a5253479e359638b","id":"8d6b8fb1bbb4f48c","kind":"SERVER","name":"get /provider/hello","timestamp":1576591155284040,"duration":1432,"localEndpoint":{"serviceName":"springcloud-provider-sleuth","ipv4":"192.168.0.104"},"remoteEndpoint":{"ipv4":"192.168.0.104","port":62182},"tags":{"http.method":"GET","http.path":"/provider/hello","mvc.controller.class":"SleuthProviderController","mvc.controller.method":"hello"},"shared":true} 19/12/18 21:44:18 DEBUG DependencyLinker: found remote ancestor {"traceId":"a5253479e359638b","parentId":"a5253479e359638b","id":"8d6b8fb1bbb4f48c","kind":"CLIENT","name":"get","timestamp":1576591155281192,"duration":3999,"localEndpoint":{"serviceName":"springcloud-consumer-sleuth","ipv4":"192.168.0.104"},"tags":{"http.method":"GET","http.path":"/provider/hello"}} 19/12/18 21:44:18 DEBUG DependencyLinker: incrementing link springcloud-consumer-sleuth -> springcloud-provider-sleuth 19/12/18 21:44:18 DEBUG DependencyLinker: building trace tree: traceId=54af196ac59ee13e 19/12/18 21:44:18 DEBUG DependencyLinker: traversing trace tree, breadth-first 19/12/18 21:44:18 DEBUG DependencyLinker: processing {"traceId":"54af196ac59ee13e","id":"54af196ac59ee13e","kind":"SERVER","name":"get /consumer/hello","timestamp":1576591134958091,"duration":139490,"localEndpoint":{"serviceName":"springcloud-consumer-sleuth","ipv4":"192.168.0.104"},"remoteEndpoint":{"ipv6":"::1","port":62085},"tags":{"http.method":"GET","http.path":"/consumer/hello","mvc.controller.class":"SleuthConsumerController","mvc.controller.method":"hello"}} 19/12/18 21:44:18 DEBUG DependencyLinker: root's client is unknown; skipping 19/12/18 21:44:18 DEBUG DependencyLinker: processing {"traceId":"54af196ac59ee13e","parentId":"54af196ac59ee13e","id":"1a827ae864bd2399","kind":"CLIENT","name":"get","timestamp":1576591134962066,"duration":133718,"localEndpoint":{"serviceName":"springcloud-consumer-sleuth","ipv4":"192.168.0.104"},"tags":{"http.method":"GET","http.path":"/provider/hello"}} 19/12/18 21:44:18 DEBUG DependencyLinker: processing {"traceId":"54af196ac59ee13e","parentId":"54af196ac59ee13e","id":"1a827ae864bd2399","kind":"SERVER","name":"get /provider/hello","timestamp":1576591135064214,"duration":37707,"localEndpoint":{"serviceName":"springcloud-provider-sleuth","ipv4":"192.168.0.104"},"remoteEndpoint":{"ipv4":"192.168.0.104","port":62089},"tags":{"http.method":"GET","http.path":"/provider/hello","mvc.controller.class":"SleuthProviderController","mvc.controller.method":"hello"},"shared":true} 19/12/18 21:44:18 DEBUG DependencyLinker: found remote ancestor {"traceId":"54af196ac59ee13e","parentId":"54af196ac59ee13e","id":"1a827ae864bd2399","kind":"CLIENT","name":"get","timestamp":1576591134962066,"duration":133718,"localEndpoint":{"serviceName":"springcloud-consumer-sleuth","ipv4":"192.168.0.104"},"tags":{"http.method":"GET","http.path":"/provider/hello"}} 19/12/18 21:44:18 DEBUG DependencyLinker: incrementing link springcloud-consumer-sleuth -> springcloud-provider-sleuth 19/12/18 21:44:18 INFO ElasticsearchDependenciesJob: Saving dependency links to zipkin:dependency-2019-12-17/dependency 19/12/18 21:44:18 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:18 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:18 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:18 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 WARN Resource: Detected type name in resource [zipkin:dependency-2019-12-17/dependency]. Type names are deprecated and will be removed in a later release. 19/12/18 21:44:19 INFO ElasticsearchDependenciesJob: Processing spans from zipkin-span-2019-12-17 19/12/18 21:44:20 INFO ElasticsearchDependenciesJob: No dependency links could be processed from spans in index zipkin-span-2019-12-17 19/12/18 21:44:20 INFO ElasticsearchDependenciesJob: Done
12、上面有一個配置:ES_NODES_WAN_ONLY=true
Whether the connector is used against an Elasticsearch instance in a cloud/restricted environment over the WAN, such as Amazon Web Services. In this mode, the connector disables discovery and only connects through the declared es.nodes during all operations, including reads and writes. Note that in this mode, performance is highly affected.
該配置的含義為通過公網我訪問雲上或者一些限制性網路上的ES例項時,如AWS,通過宣告該配置就會禁用發現其它節點的行為,後續的讀和寫都只會通過這個指定的節點進行操作,增加了該屬性就可以訪問雲上或者受限制網路中的ES,但是也因為讀寫都是通過這個節點,因而效能上會受到比較大的影響。zipkin-dependencies的github上也就簡單說明,如果這個配置為true,將僅使用在ES_HOSTS主機中設定的值,例如ES叢集在Docker中。
13、檢視kibana中生成的索引
14、然後檢視zipkin中的依賴項,我們可以看到資訊了
詳細參考案例原始碼:https://gitee.com/coding-farmer/spirngcloud-learn