HashMap主要方法原始碼分析(JDK1.8)
阿新 • • 發佈:2020-04-21
本篇從HashMap的put、get、remove方法入手,分析原始碼流程
(不涉及紅黑樹的具體演算法)
jkd1.8中HashMap的結構為陣列、連結串列、紅黑樹的形式
(未轉化紅黑樹時)
putVal()的整個流程如下 1、先判斷table是否為null,如果是,呼叫resize()
resize
resize():
判斷當前table為null後,初始化負載因子DEFAULT_LOAD_FACTOR
計算當前陣列邊界DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY
(第一次陣列邊界為16*0.75=12,當陣列超過陣列邊界時會擴大為兩倍。
也就是說陣列中的元素達到或大於12時,將第一次擴大陣列,大小變為16*2=32)
建立並返回大小為DEFAULT_INITIAL_CAPACITY的table物件。
(總的來說resize負責擴大陣列容量和初始化陣列)
2、如果進入putVal()判斷table不為null 利用hash值與(&)計算出陣列下標,並判斷是否為空 如果是,建立node物件並存入陣列 如果不是,從當前下標的連結串列第一位開始一個個往下對比 ①若hash和key值都相同,則break退出迴圈,之後進行value的替換,並返回oldValue ②若過程中遇到null,則建立node物件 判斷是否達到紅黑樹轉換條件:如果當前連結串列長度達到8,進入treeifyBin方法 判斷表長度(如果小於64,則呼叫resize(),判斷要不要增大陣列 反之replacementTreeNode,用紅黑樹代替當前連結串列
(轉化為紅黑樹時的情況)
一、關於HashMap需要了解的靜態常量
DEFAULT_INITIAL_CAPACITY 陣列預設初始容量 16 DEFAULT_LOAD_FACTOR 預設負載因子 0.75 MIN_TREEIFY_CAPACITY 最小樹容量 64 在下面的方法探究中將會提到這些靜態常量的用處二、方法探究
1、put
HashMap中的陣列是第一次呼叫put方法時才建立物件的
下面是從進入put到建立完陣列的全過程
將key、value作為引數傳入後,計算key的hash,再傳入putVal方法
/** * Implements Map.put and related methods. * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
putVal()的整個流程如下 1、先判斷table是否為null,如果是,呼叫resize()
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
以上就是呼叫put方法時HashMap物件內陣列的建立過程
2、如果進入putVal()判斷table不為null 利用hash值與(&)計算出陣列下標,並判斷是否為空 如果是,建立node物件並存入陣列 如果不是,從當前下標的連結串列第一位開始一個個往下對比 ①若hash和key值都相同,則break退出迴圈,之後進行value的替換,並返回oldValue ②若過程中遇到null,則建立node物件 判斷是否達到紅黑樹轉換條件:如果當前連結串列長度達到8,進入treeifyBin方法 判斷表長度(如果小於64,則呼叫resize(),判斷要不要增大陣列 反之replacementTreeNode,用紅黑樹代替當前連結串列
(向下遍歷陣列當前下標連結串列的操作)
(key相同時value的替換操作)
3、增加size(map中元素的數量)和modCount(對map的操作次數)
2、get
* Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; }get 將key和key的hash傳入getNode方法,並獲取返回的Node物件的value 先判斷陣列不為null,且長度大於0 利用hash值先找到node可能在的列的第一個元素(當前傳入key可能不存在) 再豎向遍歷連結串列對比hash和key值
(上面的first即為node可能存在的連結串列的第一個元素)
查詢時如果第一個即匹配則直接返回
否則往下遍歷直到匹配或node為null
3、removeNode
/** * Implements Map.remove and related methods. * * @param hash hash for key * @param key the key * @param value the value to match if matchValue, else ignored * @param matchValue if true only remove if value is equal * @param movable if false do not move other nodes while removing * @return the node, or null if none */ final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }removeNode
與getNode的邏輯類似,利用hash值查詢可能存在的位置
如果連結串列第一位就匹配:
對連結串列的遍歷:
判斷node的型別,如果是連結串列則用node.nest來代替當前位置
最後運算元+1,size-1,返回被remove的node物件
&nbs