C++11 併發指南之std::mutex詳解
上一篇《C++11 併發指南二(std::thread 詳解) 》中主要講到了 std::thread 的一些用法,並給出了兩個小例子,本文將介紹 std::mutex 的用法。
Mutex 又稱互斥量,C++ 11中與 Mutex 相關的類(包括鎖型別)和函式都宣告在 <mutex> 標頭檔案中,所以如果你需要使用 std::mutex,就必須包含 <mutex> 標頭檔案。
<mutex> 標頭檔案介紹
Mutex 系列類(四種)
- std::mutex,最基本的 Mutex 類。
- std::recursive_mutex,遞迴 Mutex 類。
- std::time_mutex,定時 Mutex 類。
- std::recursive_timed_mutex,定時遞迴 Mutex 類。
Lock 類(兩種)
- std::lock_guard,與 Mutex RAII 相關,方便執行緒對互斥量上鎖。
- std::unique_lock,與 Mutex RAII 相關,方便執行緒對互斥量上鎖,但提供了更好的上鎖和解鎖控制。
其他型別
- std::once_flag
- std::adopt_lock_t
- std::defer_lock_t
- std::try_to_lock_t
函式
- std::try_lock,嘗試同時對多個互斥量上鎖。
- std::lock,可以同時對多個互斥量上鎖。
- std::call_once,如果多個執行緒需要同時呼叫某個函式,call_once 可以保證多個執行緒對該函式只調用一次。
std::mutex 介紹
下面以 std::mutex 為例介紹 C++11 中的互斥量用法。
std::mutex 是C++11 中最基本的互斥量,std::mutex 物件提供了獨佔所有權的特性——即不支援遞迴地對 std::mutex 物件上鎖,而 std::recursive_lock 則可以遞迴地對互斥量物件上鎖。
std::mutex 的成員函式
- 建構函式,std::mutex不允許拷貝構造,也不允許 move 拷貝,最初產生的 mutex 物件是處於 unlocked 狀態的。
- lock(),呼叫執行緒將鎖住該互斥量。執行緒呼叫該函式會發生下面 3 種情況:(1). 如果該互斥量當前沒有被鎖住,則呼叫執行緒將該互斥量鎖住,直到呼叫 unlock之前,該執行緒一直擁有該鎖。(2). 如果當前互斥量被其他執行緒鎖住,則當前的呼叫執行緒被阻塞住。(3). 如果當前互斥量被當前呼叫執行緒鎖住,則會產生死鎖(deadlock)。
- unlock(), 解鎖,釋放對互斥量的所有權。
- try_lock(),嘗試鎖住互斥量,如果互斥量被其他執行緒佔有,則當前執行緒也不會被阻塞。執行緒呼叫該函式也會出現下面 3 種情況,(1). 如果當前互斥量沒有被其他執行緒佔有,則該執行緒鎖住互斥量,直到該執行緒呼叫 unlock 釋放互斥量。(2). 如果當前互斥量被其他執行緒鎖住,則當前呼叫執行緒返回 false,而並不會被阻塞掉。(3). 如果當前互斥量被當前呼叫執行緒鎖住,則會產生死鎖(deadlock)。
下面給出一個與 std::mutex 的小例子(參考)
#include <iostream> // std::cout #include <thread> // std::thread #include <mutex> // std::mutex volatile int counter(0); // non-atomic counter std::mutex mtx; // locks access to counter void attempt_10k_increases() { for (int i=0; i<10000; ++i) { if (mtx.try_lock()) { // only increase if currently not locked: ++counter; mtx.unlock(); } } } int main (int argc,const char* argv[]) { std::thread threads[10]; for (int i=0; i<10; ++i) threads[i] = std::thread(attempt_10k_increases); for (auto& th : threads) th.join(); std::cout << counter << " successful increases of the counter.\n"; return 0; }
std::recursive_mutex 介紹
std::recursive_mutex 與 std::mutex 一樣,也是一種可以被上鎖的物件,但是和 std::mutex 不同的是,std::recursive_mutex 允許同一個執行緒對互斥量多次上鎖(即遞迴上鎖),來獲得對互斥量物件的多層所有權,std::recursive_mutex 釋放互斥量時需要呼叫與該鎖層次深度相同次數的 unlock(),可理解為 lock() 次數和 unlock() 次數相同,除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。
std::time_mutex 介紹
std::time_mutex 比 std::mutex 多了兩個成員函式,try_lock_for(),try_lock_until()。
try_lock_for 函式接受一個時間範圍,表示在這一段時間範圍之內執行緒如果沒有獲得鎖則被阻塞住(與 std::mutex 的 try_lock() 不同,try_lock 如果被呼叫時沒有獲得鎖則直接返回 false),如果在此期間其他執行緒釋放了鎖,則該執行緒可以獲得對互斥量的鎖,如果超時(即在指定時間內還是沒有獲得鎖),則返回 false。
try_lock_until 函式則接受一個時間點作為引數,在指定時間點未到來之前執行緒如果沒有獲得鎖則被阻塞住,如果在此期間其他執行緒釋放了鎖,則該執行緒可以獲得對互斥量的鎖,如果超時(即在指定時間內還是沒有獲得鎖),則返回 false。
下面的小例子說明了 std::time_mutex 的用法(參考)。
#include <iostream> // std::cout #include <chrono> // std::chrono::milliseconds #include <thread> // std::thread #include <mutex> // std::timed_mutex std::timed_mutex mtx; void fireworks() { // waiting to get a lock: each thread prints "-" every 200ms: while (!mtx.try_lock_for(std::chrono::milliseconds(200))) { std::cout << "-"; } // got a lock! - wait for 1s,then this thread prints "*" std::this_thread::sleep_for(std::chrono::milliseconds(1000)); std::cout << "*\n"; mtx.unlock(); } int main () { std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(fireworks); for (auto& th : threads) th.join(); return 0; }
std::recursive_timed_mutex 介紹
和 std:recursive_mutex 與 std::mutex 的關係一樣,std::recursive_timed_mutex 的特性也可以從 std::timed_mutex 推匯出來,感興趣的同鞋可以自行查閱。 ;-)
std::lock_guard 介紹
與 Mutex RAII 相關,方便執行緒對互斥量上鎖。例子(參考):
#include <iostream> // std::cout #include <thread> // std::thread #include <mutex> // std::mutex,std::lock_guard #include <stdexcept> // std::logic_error std::mutex mtx; void print_even (int x) { if (x%2==0) std::cout << x << " is even\n"; else throw (std::logic_error("not even")); } void print_thread_id (int id) { try { // using a local lock_guard to lock mtx guarantees unlocking on destruction / exception: std::lock_guard<std::mutex> lck (mtx); print_even(id); } catch (std::logic_error&) { std::cout << "[exception caught]\n"; } } int main () { std::thread threads[10]; // spawn 10 threads: for (int i=0; i<10; ++i) threads[i] = std::thread(print_thread_id,i+1); for (auto& th : threads) th.join(); return 0; }
std::unique_lock 介紹
與 Mutex RAII 相關,方便執行緒對互斥量上鎖,但提供了更好的上鎖和解鎖控制。例子(參考):
#include <iostream> // std::cout #include <thread> // std::thread #include <mutex> // std::mutex,std::unique_lock std::mutex mtx; // mutex for critical section void print_block (int n,char c) { // critical section (exclusive access to std::cout signaled by lifetime of lck): std::unique_lock<std::mutex> lck (mtx); for (int i=0; i<n; ++i) { std::cout << c; } std::cout << '\n'; } int main () { std::thread th1 (print_block,50,'*'); std::thread th2 (print_block,'$'); th1.join(); th2.join(); return 0; }
好了,本文暫時講到這裡,還剩下 std::try_lock,std::lock,std::call_once 三個函式沒有講到,留在下一篇部落格中講吧 ;-)
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支援我們。