1. 程式人生 > 實用技巧 >資料結構:堆(Heap)

資料結構:堆(Heap)

堆就是用陣列實現的二叉樹,所以它沒有使用父指標或者子指標。堆根據“堆屬性”來排序,“堆屬性”決定了樹中節點的位置。

堆的常用方法:

  • 構建優先佇列
  • 支援堆排序
  • 快速找出一個集合中的最小值(或者最大值)
  • 在朋友面前裝逼

堆屬性

堆分為兩種:最大堆最小堆,兩者的差別在於節點的排序方式。

在最大堆中,父節點的值比每一個子節點的值都要大。在最小堆中,父節點的值比每一個子節點的值都要小。這就是所謂的“堆屬性”,並且這個屬性對堆中的每一個節點都成立。

例子:

這是一個最大堆,,因為每一個父節點的值都比其子節點要大。1072都大。751都大。

根據這一屬性,那麼最大堆總是將其中的最大值存放在樹的根節點。而對於最小堆,根節點中的元素總是樹中的最小值。堆屬性非常有用,因為堆常常被當做優先佇列使用,因為可以快速地訪問到“最重要”的元素。

注意:堆的根節點中存放的是最大或者最小元素,但是其他節點的排序順序是未知的。例如,在一個最大堆中,最大的那一個元素總是位於 index 0 的位置,但是最小的元素則未必是最後一個元素。--唯一能夠保證的是最小的元素是一個葉節點,但是不確定是哪一個。

堆和普通樹的區別

堆並不能取代二叉搜尋樹,它們之間有相似之處也有一些不同。我們來看一下兩者的主要差別:

節點的順序。在二叉搜尋樹中,左子節點必須比父節點小,右子節點必須必比父節點大。但是在堆中並非如此。在最大堆中兩個子節點都必須比父節點小,而在最小堆中,它們都必須比父節點大。

記憶體佔用。普通樹佔用的記憶體空間比它們儲存的資料要多。你必須為節點物件以及左/右子節點指標分配記憶體。堆僅僅使用一個數據來儲存陣列,且不使用指標。

平衡。二叉搜尋樹必須是“平衡”的情況下,其大部分操作的複雜度才能達到O(log n)。你可以按任意順序位置插入/刪除資料,或者使用 AVL 樹或者紅黑樹,但是在堆中實際上不需要整棵樹都是有序的。我們只需要滿足堆屬性即可,所以在堆中平衡不是問題。因為堆中資料的組織方式可以保證O(log n)的效能。

搜尋。在二叉樹中搜索會很快,但是在堆中搜索會很慢。在堆中搜索不是第一優先順序,因為使用堆的目的是將最大(或者最小)的節點放在最前面,從而快速的進行相關插入、刪除操作。

來自陣列的樹

用陣列來實現樹相關的資料結構也許看起來有點古怪,但是它在時間和空間上都是很高效的。

我們準備將上面例子中的樹這樣儲存:

[ 10, 7, 2, 5, 1 ]

就這麼多!我們除了一個簡單的陣列以外,不需要任何額外的空間。

如果我們不允許使用指標,那麼我們怎麼知道哪一個節點是父節點,哪一個節點是它的子節點呢?問得好!節點在陣列中的位置index 和它的父節點以及子節點的索引之間有一個對映關係。

如果i是節點的索引,那麼下面的公式就給出了它的父節點和子節點在陣列中的位置:

parent(i) = floor((i - 1)/2)
left(i)   = 2i + 1
right(i)  = 2i + 2

注意right(i)就是簡單的left(i) + 1。左右節點總是處於相鄰的位置。

我們將寫公式放到前面的例子中驗證一下。

NodeArray index (i)Parent indexLeft childRight child
10 0 -1 1 2
7 1 0 3 4
2 2 0 5 6
5 3 1 7 8
1 4 1 9 10

注意:根節點(10)沒有父節點,因為-1不是一個有效的陣列索引。同樣,節點(2)(5)(1)沒有子節點,因為這些索引已經超過了陣列的大小,所以我們在使用這些索引值的時候需要保證是有效的索引值。

複習一下,在最大堆中,父節點的值總是要大於(或者等於)其子節點的值。這意味下面的公式對陣列中任意一個索引i都成立:

array[parent(i)] >= array[i]

可以用上面的例子來驗證一下這個堆屬性。

如你所見,這些公式允許我們不使用指標就可以找到任何一個節點的父節點或者子節點。事情比簡單的去掉指標要複雜,但這就是交易:我們節約了空間,但是要進行更多計算。幸好這些計算很快並且只需要O(1)的時間。

理解陣列索引和節點位置之間的關係非常重要。這裡有一個更大的堆,它有15個節點被分成了4層:

Array.png

圖片中的數字不是節點的值,而是儲存這個節點的陣列索引!這裡是陣列索引和樹的層級之間的關係:

由上圖可以看到,陣列中父節點總是在子節點的前面。

注意這個方案與一些限制。你可以在普通二叉樹中按照下面的方式組織資料,但是在堆中不可以:

在堆中,在當前層級所有的節點都已經填滿之前不允許開是下一層的填充,所以堆總是有這樣的形狀:

注意:你可以使用普通樹來模擬堆,但是那對空間是極大的浪費。

小測驗,假設我們有這樣一個數組:

[ 10, 14, 25, 33, 81, 82, 99 ]

這是一個有效的堆嗎?答案是 yes !一個從低到高有序排列的陣列是以有效的最小堆,我們可以將這個堆畫出來:

堆屬性適用於每一個節點,因為父節點總是比它的位元組點小。(你也可以驗證一下:一個從高到低有序排列的陣列是一個有效的最大堆)

注意:並不是每一個最小堆都是一個有序陣列!要將堆轉換成有序陣列,需要使用堆排序。

更多數學公式

如果你好奇,這裡有更多的公式描述了堆的一些確定屬性。你不需要知道這些,但它們有時會派上用場。 可以直接跳過此部分!

樹的高度是指從樹的根節點到最低的葉節點所需要的步數,或者更正式的定義:高度是指節點之間的邊的最大值。一個高度為 h 的堆有 h+1 層。

下面這個對的高度是3,所以它有4層:

如果一個堆有 n 個節點,那麼它的高度是h = floor(log2(n))。這是因為我們總是要將這一層完全填滿以後才會填充新的一層。上面的例子有 15 個節點,所以它的高度是floor(log2(15)) = floor(3.91) = 3

如果最下面的一層已經填滿,那麼那一層包含2^h個節點。樹中這一層以上所有的節點數目為2^h - 1。同樣是上面這個例子,最下面的一層有8個節點,實際上就是2^3 = 8。前面的三層一共包含7的節點,即:2^3 - 1 = 8 - 1 = 7

所以整個堆中的節點數目為:* 2^(h+1) - 1*。上面的例子中,2^4 - 1 = 16 - 1 = 15

葉節點總是位於陣列的floor(n/2)n-1之間。

可以用堆做什麼?

有兩個原始操作用於保證插入或刪除節點以後堆是一個有效的最大堆或者最小堆:

  • shiftUp(): 如果一個節點比它的父節點大(最大堆)或者小(最小堆),那麼需要將它同父節點交換位置。這樣是這個節點在陣列的位置上升。
  • shiftDown(): 如果一個節點比它的子節點小(最大堆)或者大(最小堆),那麼需要將它向下移動。這個操作也稱作“堆化(heapify)”。

shiftUp 或者 shiftDown 是一個遞迴的過程,所以它的時間複雜度是O(log n)。

基於這兩個原始操作還有一些其他的操作:

  • insert(value): 在堆的尾部新增一個新的元素,然後使用shiftUp來修復對。
  • remove(): 移除並返回最大值(最大堆)或者最小值(最小堆)。為了將這個節點刪除後的空位填補上,需要將最後一個元素移到根節點的位置,然後使用shiftDown方法來修復堆。
  • removeAtIndex(index): 和remove()一樣,差別在於可以移除堆中任意節點,而不僅僅是根節點。當它與子節點比較位置不時無序時使用shiftDown(),如果與父節點比較發現無序則使用shiftUp()
  • replace(index, value):將一個更小的值(最小堆)或者更大的值(最大堆)賦值給一個節點。由於這個操作破壞了堆屬性,所以需要使用shiftUp()來修復堆屬性。

上面所有的操作的時間複雜度都是O(log n),因為 shiftUp 和 shiftDown 都很費時。還有少數一些操作需要更多的時間:

  • search(value):堆不是為快速搜尋而建立的,但是replace()removeAtIndex()操作需要找到節點在陣列中的index,所以你需要先找到這個index。時間複雜度:O(n)。
  • buildHeap(array):通過反覆呼叫insert()方法將一個(無序)陣列轉換成一個堆。如果你足夠聰明,你可以在O(n)時間內完成。
  • 堆排序:由於堆就是一個數組,我們可以使用它獨特的屬性將陣列從低到高排序。時間複雜度:O(n lg n)。

堆還有一個peek()方法,不用刪除節點就返回最大值(最大堆)或者最小值(最小堆)。時間複雜度O(1)。

注意:到目前為止,堆的常用操作還是使用insert()插入一個新的元素,和通過remove()移除最大或者最小值。兩者的時間複雜度都是O(log n)。其其他的操作是用於支援更高階的應用,比如說建立一個優先佇列。

插入

我們通過一個插入例子來看看插入操作的細節。我們將數字16插入到這個堆中:

堆的陣列是:[ 10, 7, 2, 5, 1 ]

第一股是將新的元素插入到陣列的尾部。陣列變成:

[ 10, 7, 2, 5, 1, 16 ]

相應的樹變成了:

16被新增最後一行的第一個空位。

不行的是,現在堆屬性不滿足,因為216的上面,我們需要將大的數字在上面(這是一個最大堆)

為了恢復堆屬性,我們需要交換162

現在還沒有完成,因為10也比16小。我們繼續交換我們的插入元素和它的父節點,直到它的父節點比它大或者我們到達樹的頂部。這就是所謂的shift-up,每一次插入操作後都需要進行。它將一個太大或者太小的數字“浮起”到樹的頂部。

最後我們得到的堆:

現在每一個父節點都比它的子節點大。

刪除根節點

我們將這個樹中的(10)刪除:

現在頂部有一個空的節點,怎麼處理?

當插入節點的時候,我們將新的值返給陣列的尾部。現在我們來做相反的事情:我們取出陣列中的最後一個元素,將它放到樹的頂部,然後再修復堆屬性。

現在來看怎麼shift-down(1)。為了保持最大堆的堆屬性,我們需要樹的頂部是最大的資料。現在有兩個數字可用於交換72。我們選擇這兩者中的較大者稱為最大值放在樹的頂部,所以交換71,現在樹變成了:

繼續堆化直到該節點沒有任何子節點或者它比兩個子節點都要大為止。對於我們的堆,我們只需要再有一次交換就恢復了堆屬性:

刪除任意節點

絕大多數時候你需要刪除的是堆的根節點,因為這就是堆的設計用途。

但是,刪除任意節點也很有用。這是remove()的通用版本,它可能會使用到shiftDownshiftUp

我們還是用前面的例子,刪除(7):

[圖片上傳失敗...(image-d46ac4-1534077058042)]

對應的陣列是

[ 10, 7, 2, 5, 1 ]

你知道,移除一個元素會破壞最大堆或者最小堆屬性。我們需要將刪除的元素和最後一個元素交換:

[ 10, 1, 2, 5, 7 ]

最後一個元素就是我們需要返回的元素;然後呼叫removeLast()來將它刪除。(1)比它的子節點小,所以需要shiftDown()來修復。

然而,shift down 不是我們要處理的唯一情況。也有可能我們需要 shift up。考慮一下從下面的堆中刪除(5)會發生什麼:

現在(5)(8)交換了。因為(8)比它的父節點大,我們需要shiftUp()

原文請戳這裡