1. 程式人生 > 實用技巧 >Spark ML 之 推薦演算法專案(下)

Spark ML 之 推薦演算法專案(下)

一、整體思路

二、程式碼分析

1、合併資料。使用者見過的商品,根據使用者行為,區分喜歡0-不喜歡1;使用者沒見過的商品,標記為2

  // 判斷使用者是否喜歡商品 假設使用者下單或存放購物車 就喜歡 否則不喜歡
  val isLove: UserDefinedFunction = udf{
    (act:String)=>{
      if(act.equalsIgnoreCase("BROWSE")
        ||act.equalsIgnoreCase("COLLECT")){
        0
      }else{
        1
      }
    }
  }
import spark.implicits._
    // 獲取全域性熱賣的資料
    // (cust_id,good_id,rank)
    val hot = HDFSConnection.readDataToHDFS(spark,"/myshops/dwd_hotsell")
      .select($"cust_id",$"good_id")
    // 獲取分組召回的資料
    val group = HDFSConnection.readDataToHDFS(spark,"/myshops/dwd_kMeans")
      .select($"cust_id",$"good_id
") // 獲取ALS召回資料 val als = HDFSConnection.readDataToHDFS(spark,"/myshops/dwd_ALS_Iter20") .select($"cust_id",$"good_id") // 獲取使用者下單資料,使用者下單或購物車=> 喜歡 else=> 不喜歡 val order = spark.sparkContext .textFile("file:///D:/logs/virtualLogs/*.log") .map(line=>{ val arr = line.split("
") (arr(0),arr(2),arr(3)) }) .toDF("act","cust_id","good_id") .withColumn("flag",isLove($"act")) .drop("act") .distinct() .cache() // 三路召回合併(包含冷使用者=> 2) // 使用者完全沒有見過的商品填充為2 val all = hot.union(group).union(als) .join(order,Seq("cust_id","good_id"),"left") .na.fill(2)

2、準備LR模型需要的資料:label:喜不喜歡,features:user和goods的屬性,並歸一化

  // 簡單資料歸一化
  val priceNormalize: UserDefinedFunction =udf{
    (price:String)=>{
  // maxscale & minscale
      val p:Double = price.toDouble
      p/(10000+p)
    }
  }
  def goodNumberFormat(spark: SparkSession): DataFrame ={
    val good_infos = MYSQLConnection.readMySql(spark,"goods")
      .filter("is_sale=1")
      .drop("spu_pro_name","tags","content","good_name","created_at","update_at","good_img_pos","sku_good_code")
    // 品牌的數字化處理
    val brand_index = new StringIndexer().setInputCol("brand_name").setOutputCol("brand")
    val bi = brand_index.fit(good_infos).transform(good_infos)
    // 商品分類的數字化
    val type_index = new StringIndexer().setInputCol("cate_name").setOutputCol("cate")
    val ct = type_index.fit(bi).transform(bi)
    // 原和現價歸一化
    import spark.implicits._
    val pc = ct.withColumn("nprice",priceNormalize($"price"))
      .withColumn("noriginal",priceNormalize($"original"))
      .withColumn("nsku_num",priceNormalize($"sku_num"))
      .drop("price","original","sku_num")
    // 特徵值轉數字化
    val feat_index = new StringIndexer().setInputCol("spu_pro_value").setOutputCol("pro_value")
    feat_index.fit(pc).transform(pc).drop("spu_pro_value")
  }
// 每一列新增LR迴歸演算法需要的使用者自然屬性,使用者行為屬性,商品自然屬性
    val user_info_df = KMeansHandler.user_act_info(spark)
    // 從資料庫獲取商品中影響商品銷售的自然屬性
    val good_infos = goodNumberFormat(spark)
    // 將3路召回的資料和使用者資訊以及商品資訊關聯
    val ddf = all.join(user_info_df,Seq("cust_id"),"inner")
      .join(good_infos,Seq("good_id"),"inner")
    // 資料全體轉 Double
    val columns = ddf.columns.map(f => col(f).cast(DoubleType))
    val num_fmt = ddf.select(columns:_*)
    // 特徵列聚合到一起形成密集向量
    val va = new VectorAssembler().setInputCols(
      Array("province_id","city_id","district_id","sex","marital_status","education_id","vocation","post","compId","mslevel","reg_date","lasttime","age","user_score","logincount","buycount","pay","is_sale","spu_pro_status","brand","cate","nprice","noriginal","nsku_num","pro_value"))
      .setOutputCol("orign_feature")
    val ofdf = va.transform(num_fmt).select($"cust_id",$"good_id",$"flag".alias("label"),$"orign_feature")
    // 資料歸一化處理
    val mmScaler = new MinMaxScaler().setInputCol("orign_feature").setOutputCol("features")
    val res = mmScaler.fit(ofdf).transform(ofdf)
      .select($"cust_id", $"good_id", $"label", $"features")

3、準備資料分兩類:一類label=0/1 用於預測,一類label=2 用於推薦

(res.filter("label!=2"),res.filter("label=2"))