1. 程式人生 > 實用技巧 >mysql 索引的原理

mysql 索引的原理

一 介紹

為何要有索引?

一般的應用系統,讀寫比例在10:1左右,而且插入操作和一般的更新操作很少出現效能問題,在生產環境中,我們遇到最多的,也是最容易出問題的,還是一些複雜的查詢操作,因此對查詢語句的優化顯然是重中之重。說起加速查詢,就不得不提到索引了。

什麼是索引

索引在MySQL中也叫做“鍵”,是儲存引擎用於快速找到記錄的一種資料結構。索引對於良好的效能
非常關鍵,尤其是當表中的資料量越來越大時,索引對於效能的影響愈發重要。
索引優化應該是對查詢效能優化最有效的手段了。索引能夠輕易將查詢效能提高好幾個數量級。
索引相當於字典的音序表,如果要查某個字,如果不使用音序表,則需要從幾百頁中逐頁去查。


30

        10                          40

   5         15               35          66

1    6    11   19          21   39     55    100

你是否對索引存在誤解?

索引是應用程式設計和開發的一個重要方面。若索引太多,應用程式的效能可能會受到影響。而索引太少,對查詢效能又會產生影響,要找到一個平衡點,這對應用程式的效能至關重要。一些開發人員總是在事後才想起新增索引----我一直認為,這源於一種錯誤的開發模式。如果知道資料的使用,從一開始就應該在需要處新增索引。開發人員往往對資料庫的使用停留在應用的層面,比如編寫SQL語句、儲存過程之類,他們甚至可能不知道索引的存在,或認為事後讓相關DBA加上即可。DBA往往不夠了解業務的資料流,而新增索引需要通過監控大量的SQL語句進而從中找到問題,這個步驟所需的時間肯定是遠大於初始新增索引所需的時間,並且可能會遺漏一部分的索引。當然索引也並不是越多越好,我曾經遇到過這樣一個問題:某臺MySQL伺服器iostat顯示磁碟使用率一直處於100%,經過分析後發現是由於開發人員添加了太多的索引,在刪除一些不必要的索引之後,磁碟使用率馬上下降為20%。可見索引的新增也是非常有技術含量的。

考慮到磁碟IO是非常高昂的操作,計算機作業系統做了一些優化,當一次IO時,不光把當前磁碟地址的資料,而是把相鄰的資料也都讀取到記憶體緩衝區內,因為區域性預讀性原理告訴我們,當計算機訪問一個地址的資料的時候,與其相鄰的資料也會很快被訪問到。每一次IO讀取的資料我們稱之為一頁(page)。具體一頁有多大資料跟作業系統有關,一般為4k或8k,也就是我們讀取一頁內的資料時候,實際上才發生了一次IO,這個理論對於索引的資料結構設計非常有幫助。

索引的資料結構

前面講了索引的基本原理,資料庫的複雜性,又講了作業系統的相關知識,目的就是讓大家瞭解,任何一種資料結構都不是憑空產生的,一定會有它的背景和使用場景,我們現在總結一下,我們需要這種資料結構能夠做些什麼,其實很簡單,那就是:每次查詢資料時把磁碟IO次數控制在一個很小的數量級,最好是常數數量級。那麼我們就想到如果一個高度可控的多路搜尋樹是否能滿足需求呢?就這樣,b+樹應運而生(B+樹是通過二叉查詢樹,再由平衡二叉樹,B樹演化而來)

如上圖,是一顆b+樹,關於b+樹的定義可以參見B+樹,這裡只說一些重點,淺藍色的塊我們稱之為一個磁碟塊,可以看到每個磁碟塊包含幾個資料項(深藍色所示)和指標(黃色所示),如磁碟塊1包含資料項17和35,包含指標P1、P2、P3,P1表示小於17的磁碟塊,P2表示在17和35之間的磁碟塊,P3表示大於35的磁碟塊。真實的資料存在於葉子節點即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節點只不儲存真實的資料,只儲存指引搜尋方向的資料項,如17、35並不真實存在於資料表中。

b+樹的查詢過程

如圖所示,如果要查詢資料項29,那麼首先會把磁碟塊1由磁碟載入到記憶體,此時發生一次IO,在記憶體中用二分查詢確定29在17和35之間,鎖定磁碟塊1的P2指標,記憶體時間因為非常短(相比磁碟的IO)可以忽略不計,通過磁碟塊1的P2指標的磁碟地址把磁碟塊3由磁碟載入到記憶體,發生第二次IO,29在26和30之間,鎖定磁碟塊3的P2指標,通過指標載入磁碟塊8到記憶體,發生第三次IO,同時記憶體中做二分查詢找到29,結束查詢,總計三次IO。真實的情況是,3層的b+樹可以表示上百萬的資料,如果上百萬的資料查詢只需要三次IO,效能提高將是巨大的,如果沒有索引,每個資料項都要發生一次IO,那麼總共需要百萬次的IO,顯然成本非常非常高。

b+樹性質

1.索引欄位要儘量的小:通過上面的分析,我們知道IO次數取決於b+數的高度h,假設當前資料表的資料為N,每個磁碟塊的資料項的數量是m,則有h=㏒(m+1)N,當資料量N一定的情況下,m越大,h越小;而m = 磁碟塊的大小 / 資料項的大小,磁碟塊的大小也就是一個數據頁的大小,是固定的,如果資料項佔的空間越小,資料項的數量越多,樹的高度越低。這就是為什麼每個資料項,即索引欄位要儘量的小,比如int佔4位元組,要比bigint8位元組少一半。這也是為什麼b+樹要求把真實的資料放到葉子節點而不是內層節點,一旦放到內層節點,磁碟塊的資料項會大幅度下降,導致樹增高。當資料項等於1時將會退化成線性表。
2.索引的最左匹配特性:當b+樹的資料項是複合的資料結構,比如(name,age,sex)的時候,b+數是按照從左到右的順序來建立搜尋樹的,比如當(張三,20,F)這樣的資料來檢索的時候,b+樹會優先比較name來確定下一步的所搜方向,如果name相同再依次比較age和sex,最後得到檢索的資料;但當(20,F)這樣的沒有name的資料來的時候,b+樹就不知道下一步該查哪個節點,因為建立搜尋樹的時候name就是第一個比較因子,必須要先根據name來搜尋才能知道下一步去哪裡查詢。比如當(張三,F)這樣的資料來檢索時,b+樹可以用name來指定搜尋方向,但下一個欄位age的缺失,所以只能把名字等於張三的資料都找到,然後再匹配性別是F的資料了, 這個是非常重要的性質,即索引的最左匹配特性。