1. 程式人生 > 實用技巧 >linux下定時清理flink資料

linux下定時清理flink資料

更多python教程請到: 菜鳥教程 https://www.piaodoo.com/


在處理numpy陣列,有這個需求,故寫下此文:

使用np.argwhere和np.all來查詢索引。要使用np.delete刪除它們。

示例1

import numpy as np
a = np.array([[1, 2, 0, 3, 0],
       [4, 5, 0, 6, 0],
       [7, 8, 0, 9, 0]])

idx = np.argwhere(np.all(a[..., :] == 0, axis=0))
a2 = np.delete(a, idx, axis=1)

print(a2)

"""
[[1 2 3]
[4 5 6]
[7 8 9]]
"""

示例2

import numpy as np

array1 = np.array([[1,0,1,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,0],
[0,1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0,1,1,1],
[0,0,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,1,1],
[0,1,1,0,0,1,1,1,1,0,1,1,1,0,0,1,0,0,1,1],
[0,0,1,0,0,1,1,1,0,1,0,1,1,0,1,1,0,0,1,0],
[1,0,1,0,0,0,1,0,0,1,1,1,1,0,1,1,0,0,1,0],
[1,0,1,0,1,1,0,0,0,0,1,0,0,0,1,0,0,0,1,1],
[0,1,0,0,1,0,0,0,1,0,1,1,1,0,1,0,0,1,1,0],
[0,1,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,1,0,0],
[1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,0,0]])

mask = (array1 == 0).all(0)
column_indices = np.where(mask)[0]
array1 = array1[:,~mask]

print("raw array", array1.shape) # raw array (10, 20)
print("after array",array1.shape) # after array (10, 17)
print("=x=\n",array1)

其它檢視:https://moonbooks.org/Articles/How-to-remove-array-rows-that-contain-only-0-in-python/

pandas 刪除全零列

from pandas import DataFrame

df1=DataFrame(np.arange(16).reshape((4,4)),index=['a','b','c','d'],columns=['one','two','three','four']) # 建立一個dataframe
df1.loc['e'] = 0 # 優雅地增加一行全0
df1.ix[(df10).all(axis=1), :] # 找到它
df1.ix[~(df1
0).all(axis=1), :] # 刪了它

到此這篇關於Numpy(Pandas)刪除全為零的列的方法的文章就介紹到這了,更多相關Numpy刪除全為零的列內容請搜尋指令碼之家以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援指令碼之家!