1. 程式人生 > 實用技巧 >010:dyld載入流程

010:dyld載入流程

問題

目錄

預備

正文

1:main、load、C++ 的執行順序

__attribute__((constructor)) void htFunc() {
    printf("%s \n",__func__);
}

@interface HTPerson : NSObject
@end

@implementation HTPerson

+ (void)load {
    NSLog(@"%s", __func__);
}

@end

int main(int :, const char * argv[]) {
    @autoreleasepool {
        
        NSLog(
@"%s",__func__); } return 0; }

列印順序:load->c++(constructor)->main

2:編譯過程及庫

2.1:編譯

  • 原始檔:載入.h、.m、.cpp等檔案
  • 預處理:替換巨集,刪除註釋,展開標頭檔案,產生.i檔案
  • 編譯:將.i檔案轉換為組合語言,產生.s檔案
  • 彙編:將彙編檔案轉換為機器碼檔案,產生.o檔案
  • 連結:對.o檔案中引用其他庫的地方進行引用,生成最後的可執行檔案

2.2:靜態庫 和 動態庫

程式碼庫有靜態庫動態庫兩種,在開始探索app啟動流程前,我們先了解兩者的區別。

2.1 靜態庫:

靜態編譯的庫,在編譯時

就將整個函式庫的所有資料都整合進目標程式碼中。尾綴有.a.lib.framework等。

  • 優點:模組化,分工合作,提高了程式碼的複用和核心技術的保密程度
  • 缺點: 會加大包的體積。如果靜態函式庫被改變,程式必須重新編譯

2.2 動態庫:

編譯時不會將函式庫編譯進目的碼中,只有程式執行相關函式時,才呼叫函式庫的相應函式。尾綴有.tbd.so.framework

  • 優點: 可執行檔案體積小,多個應用程式共享記憶體中同一份庫檔案,節省記憶體資源,支援實時模組升級。
  • 蘋果的動態庫支援所有APP共享記憶體(如UIKit),但APP動態庫是寫入app main bundle根目錄中,執行在沙盒
    中,只支援當前APP內共享記憶體。(iOS8後App Extension功能支援主app和外掛之間共享動態庫)

3:dyld載入流程

1. 什麼是dyld?

  dyld是英文the dynamic link editor的簡寫,翻譯過來就是動態連結器,是蘋果作業系統的一個重要的組成部分。在iOS/Mac OSX系統中,僅有很少量的程序只需要核心就能完成載入,基本上所有的程序都是動態連結的,所以Mach-O映象檔案中會有很多對外部的庫和符號的引用,但是這些引用並不能直接用,在啟動時還必須要通過這些引用進行內容的填補,這個填補工作就是由動態連結器dyld來完成的,也就是符號繫結動態連結器dyld在系統中以一個使用者態的可執行檔案形式存在,一般應用程式會在Mach-O檔案部分指定一個LC_LOAD_DYLINKER的載入命令,此載入命令指定了dyld的路徑,通常它的預設值是/usr/lib/dyld。系統核心在載入Mach-O檔案時,都需要用dyld(位於/usr/lib/dyld)程式進行連結。其實dyld就是把應用的MachO檔案載入到記憶體中。

2:App載入過程是:

原始檔(.h .m .cpp)->預編譯(詞法語法分析) ->編譯(載入靜態庫) ->彙編->連結(關聯動態庫) ->生成可執行檔案(mach-o)

3:dyld動態連結器載入流程

配置應用環境->初始化主程式->載入共享快取->載入動態庫->連結主程式->連結動態庫->弱符號繫結->執行初始化->呼叫main函式

4:dyld載入流程分析

動態連結器dyld是核心執行核心命令LC_LOAD_DYLINKER載入命令時啟動的,預設使用/usr/lib/dyld檔案作為動態連結器。

執行程式,打上斷點之後,然後檢視函式呼叫棧。

4.1:start函式分析

在上圖的第11行處,彙編指令callq就是呼叫函式的指令,這個函式也是我們APP開始的地方。

4.2:_dyld_start分析

根據這個線索,我們在dyld的原始碼搜尋_dyld_start函式,可以在dyldStartup.s檔案中找到入口,分析之後可以發現這個檔案中按照不同架構分別作了邏輯處理,比如i386x86_64armarm64

#if __arm64__
    .text
    .align 2
    .globl __dyld_start
__dyld_start:
    mov     x28, sp
    and     sp, x28, #~15        // force 16-byte alignment of stack
    
    // 省略部分程式碼......
    
    // call dyldbootstrap::start(app_mh, argc, argv, dyld_mh, &startGlue)
    bl    __ZN13dyldbootstrap5startEPKN5dyld311MachOLoadedEiPPKcS3_Pm
    mov    x16,x0                  // save entry point address in x16

找到關鍵指令bl跳轉函式,根據註釋,我們可以得到這裡會跳轉呼叫dyld的載入程式dyldbootstrap::start

4.3:dyldbootstrap::start

dyldbootstrap::start就是指dyldbootstrap這個名稱空間作用域裡的start函式

我們在dyld的原始碼裡搜尋dyldbootstrap,然後找到start函式。

uintptr_t start(const dyld3::MachOLoaded* appsMachHeader, int argc, const char* argv[],
                const dyld3::MachOLoaded* dyldsMachHeader, uintptr_t* startGlue)
{

    // Emit kdebug tracepoint to indicate dyld bootstrap has started <rdar://46878536>
    dyld3::kdebug_trace_dyld_marker(DBG_DYLD_TIMING_BOOTSTRAP_START, 0, 0, 0, 0);

    // if kernel had to slide dyld, we need to fix up load sensitive locations
    // we have to do this before using any global variables
    rebaseDyld(dyldsMachHeader);

    // kernel sets up env pointer to be just past end of agv array
    const char** envp = &argv[argc+1];
    
    // kernel sets up apple pointer to be just past end of envp array
    const char** apple = envp;
    while(*apple != NULL) { ++apple; }
    ++apple;

    // set up random value for stack canary
    __guard_setup(apple);

#if DYLD_INITIALIZER_SUPPORT
    // run all C++ initializers inside dyld
    runDyldInitializers(argc, argv, envp, apple);
#endif

    // now that we are done bootstrapping dyld, call dyld's main
    uintptr_t appsSlide = appsMachHeader->getSlide();
    return dyld::_main((macho_header*)appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
}
  • 首先呼叫rebaseDyld()dyld重定位;
  • 然後呼叫__guard_setup棧溢位保護;
  • 最後呼叫dyld::_main進入dyld_main函式

為什麼要rebaseDyld()重定位

這裡要提到兩種蘋果用來保證應用安全的技術:ASLRCode Sign

ASLR: 是Address Space Layout Randomization(地址空間佈局隨機化)的簡稱。App在被啟動的時候,程式會被對映到邏輯地址空間,這個邏輯地址空間有一個起始地址,ASLR技術讓這個起始地址是隨機的。這個地址如果是固定的,攻擊者很容易就用起始地址+函式偏移地址找到對應的函式地址。

Code Sign: 是蘋果程式碼加密簽名機制,但是在Code Sign操作的時候,加密的雜湊不是針對整個檔案,而是針對每一個Page的。這個就保證了dyld在載入的時候,可以對每個page進行獨立的驗證。

正是因為ASLR使得地址隨機化,導致起始地址不固定,以及Code Sign,導致不能直接修改Image。所以需要rebase來處理符號引用問題,Rebase的時候只需要通過增加對應偏移量就行了。Rebase主要的作用就是修正內部(指向當前Mach-O檔案)的指標指向,也就是基地址復位功能。

4.4rebaseDyld()分析

//
// On disk, all pointers in dyld's DATA segment are chained together.
// They need to be fixed up to be real pointers to run.
//
static void rebaseDyld(const dyld3::MachOLoaded* dyldMH)
{
    // walk all fixups chains and rebase dyld
    // 遍歷所有固定的 chains 然後 rebase dyld
    const dyld3::MachOAnalyzer* ma = (dyld3::MachOAnalyzer*)dyldMH;
    assert(ma->hasChainedFixups());
    uintptr_t slide = (long)ma; // all fixup chain based images have a base address of zero, so slide == load address
    // 所有基於修正鏈的映像的基地址為零,因此slide == 載入地址
    __block Diagnostics diag;
    ma->withChainStarts(diag, 0, ^(const dyld_chained_starts_in_image* starts) {
        ma->fixupAllChainedFixups(diag, starts, slide, dyld3::Array<const void*>(), nullptr);
    });
    diag.assertNoError();

    // now that rebasing done, initialize mach/syscall layer
    mach_init();

    // <rdar://47805386> mark __DATA_CONST segment in dyld as read-only (once fixups are done)
    ma->forEachSegment(^(const dyld3::MachOFile::SegmentInfo& info, bool& stop) {
        if ( info.readOnlyData ) {
            ::mprotect(((uint8_t*)(dyldMH))+info.vmAddr, (size_t)info.vmSize, VM_PROT_READ);
        }
    });
}

4.5dyld::_main分析

uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
    // 第1步:初始化程式執行環境
    // 初始化執行環境配置以及拿到Mach-O標頭檔案    (macho_header裡面包含整個Mach-O檔案資訊其中包括所有鏈入的動態庫資訊)
    
    uint8_t mainExecutableCDHashBuffer[20];
    const uint8_t* mainExecutableCDHash = nullptr;
    if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
        mainExecutableCDHash = mainExecutableCDHashBuffer;

    notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));

    uintptr_t result = 0;
    
    // 獲取主程式的macho_header結構以及主程式的slide偏移值
    
    sMainExecutableMachHeader = mainExecutableMH;
    sMainExecutableSlide = mainExecutableSlide;
    ......
    CRSetCrashLogMessage("dyld: launch started");
    
    // 設定上下文資訊
    setContext(mainExecutableMH, argc, argv, envp, apple);

    // 獲取主程式路徑
    // Pickup the pointer to the exec path.
    sExecPath = _simple_getenv(apple, "executable_path");

    if (!sExecPath) sExecPath = apple[0];

    if ( sExecPath[0] != '/' ) {
        // have relative path, use cwd to make absolute
        char cwdbuff[MAXPATHLEN];
        if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
            // maybe use static buffer to avoid calling malloc so early...
            char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
            strcpy(s, cwdbuff);
            strcat(s, "/");
            strcat(s, sExecPath);
            sExecPath = s;
        }
    }

   // 獲取程序名稱
    // Remember short name of process for later logging
    sExecShortName = ::strrchr(sExecPath, '/');
    if ( sExecShortName != NULL )
        ++sExecShortName;
    else
        sExecShortName = sExecPath;

    // 配置程序受限模式
    configureProcessRestrictions(mainExecutableMH, envp);

    // 檢測環境變數
    checkEnvironmentVariables(envp);
    defaultUninitializedFallbackPaths(envp);

    // 判斷是否設定了sEnv.DYLD_PRINT_OPTS以及sEnv.DYLD_PRINT_ENV,分別列印argv引數和envp環境變數
    if ( sEnv.DYLD_PRINT_OPTS )
        printOptions(argv);
    if ( sEnv.DYLD_PRINT_ENV ) 
        printEnvironmentVariables(envp);

    // 獲取當前程式架構
    getHostInfo(mainExecutableMH, mainExecutableSlide);


    // load shared cache
    // 第2步、載入共享快取 shared cache
    // 檢查共享快取是否開啟,iOS必須開啟!!!!!!
    checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
    if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
#if TARGET_OS_SIMULATOR
        if ( sSharedCacheOverrideDir)
            mapSharedCache();
#else
        mapSharedCache();
#endif
    }

   ......
    
    try {
        // add dyld itself to UUID list
        addDyldImageToUUIDList();
        
        // 第3步:例項化主程式,並賦值給ImageLoader::LinkContext
        
        sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
        gLinkContext.mainExecutable = sMainExecutable;
        gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);

    ......

    #if SUPPORT_VERSIONED_PATHS
        checkVersionedPaths();
    #endif
        // dyld_all_image_infos image list does not contain dyld
        // add it as dyldPath field in dyld_all_image_infos
        // for simulator, dyld_sim is in image list, need host dyld added
        
#if TARGET_OS_SIMULATOR
        // get path of host dyld from table of syscall vectors in host dyld
        void* addressInDyld = gSyscallHelpers;
#else
        // get path of dyld itself
        void*  addressInDyld = (void*)&__dso_handle;
#endif
        char dyldPathBuffer[MAXPATHLEN+1];
        int len = proc_regionfilename(getpid(), (uint64_t)(long)addressInDyld, dyldPathBuffer, MAXPATHLEN);
        if ( len > 0 ) {
            dyldPathBuffer[len] = '\0'; // proc_regionfilename() does not zero terminate returned string
            if ( strcmp(dyldPathBuffer, gProcessInfo->dyldPath) != 0 )
                gProcessInfo->dyldPath = strdup(dyldPathBuffer);
        }

       // 第4步 載入插入的動態庫
       
        // load any inserted libraries
        if  ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
            for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) 
                loadInsertedDylib(*lib);
        }
        
        // record count of inserted libraries so that a flat search will look at 
        // inserted libraries, then main, then others.
        sInsertedDylibCount = sAllImages.size()-1;

        // link main executable
        //第5步:連結主程式++++++++++++++
        
        gLinkContext.linkingMainExecutable = true;
#if SUPPORT_ACCELERATE_TABLES
        if ( mainExcutableAlreadyRebased ) {
            // previous link() on main executable has already adjusted its internal pointers for ASLR
            // work around that by rebasing by inverse amount
            sMainExecutable->rebase(gLinkContext, -mainExecutableSlide);
        }
#endif
        link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
        sMainExecutable->setNeverUnloadRecursive();
        if ( sMainExecutable->forceFlat() ) {
            gLinkContext.bindFlat = true;
            gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
        }

    // 第6步、連結插入的動態庫
    
        // link any inserted libraries
        // do this after linking main executable so that any dylibs pulled in by inserted 
        // dylibs (e.g. libSystem) will not be in front of dylibs the program uses
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
                image->setNeverUnloadRecursive();
            }
            // only INSERTED libraries can interpose
            // register interposing info after all inserted libraries are bound so chaining works
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->registerInterposing(gLinkContext);
            }
        }

        // <rdar://problem/19315404> dyld should support interposition even without DYLD_INSERT_LIBRARIES
        for (long i=sInsertedDylibCount+1; i < sAllImages.size(); ++i) {
            ImageLoader* image = sAllImages[i];
            if ( image->inSharedCache() )
                continue;
            image->registerInterposing(gLinkContext);
        }
    
        ......
    
        // apply interposing to initial set of images
        for(int i=0; i < sImageRoots.size(); ++i) {
            sImageRoots[i]->applyInterposing(gLinkContext);
        }
        ImageLoader::applyInterposingToDyldCache(gLinkContext);

        // Bind and notify for the main executable now that interposing has been registered
        uint64_t bindMainExecutableStartTime = mach_absolute_time();
        sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
        uint64_t bindMainExecutableEndTime = mach_absolute_time();
        ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
        gLinkContext.notifyBatch(dyld_image_state_bound, false);

        // Bind and notify for the inserted images now interposing has been registered
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
            }
        }
        
        // 第7步、在連結所有插入的image後,執行弱繫結
        
        // <rdar://problem/12186933> do weak binding only after all inserted images linked
        sMainExecutable->weakBind(gLinkContext);
        gLinkContext.linkingMainExecutable = false;

        sMainExecutable->recursiveMakeDataReadOnly(gLinkContext);

        CRSetCrashLogMessage("dyld: launch, running initializers");
    #if SUPPORT_OLD_CRT_INITIALIZATION
        // Old way is to run initializers via a callback from crt1.o
        if ( ! gRunInitializersOldWay ) 
            initializeMainExecutable(); 
    #else
    
    // 第8步:執行所有的初始化方法
        
        // run all initializers
        initializeMainExecutable(); 
    #endif

        // notify any montoring proccesses that this process is about to enter main()
        notifyMonitoringDyldMain();
        if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
            dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
        }
        ARIADNEDBG_CODE(220, 1);

#if __MAC_OS_X_VERSION_MIN_REQUIRED
        if ( gLinkContext.driverKit ) {
            result = (uintptr_t)sEntryOveride;
            if ( result == 0 )
                halt("no entry point registered");
            *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
        }
        else
#endif
        {
        
        // 第9步:查詢主程式的入口點並返回
        
            // find entry point for main executable
            result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
            
            if ( result != 0 ) {
                // main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
                if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
                    *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
                else
                    halt("libdyld.dylib support not present for LC_MAIN");
            }
            else {
                // main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
                result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
                *startGlue = 0;
            }
        }
#if __has_feature(ptrauth_calls)
        // start() calls the result pointer as a function pointer so we need to sign it.
        result = (uintptr_t)__builtin_ptrauth_sign_unauthenticated((void*)result, 0, 0);
#endif
    }
    catch(const char* message) {
        syncAllImages();
        halt(message);
    }
    catch(...) {
        dyld::log("dyld: launch failed\n");
    }

    ......
    
    return result;
}

以下總結一下dyld::_main主要做了什麼

  • 1.主程式執行環境初始化及配置,拿到Mach-O標頭檔案 (macho_header裡面包含整個Mach-O檔案資訊其中包括所有鏈入的動態庫資訊);
  • 2.載入共享快取shared cache
  • 3.例項化主程式,並賦值給ImageLoader::LinkContext
  • 4.載入所有插入的動態庫,將可執行檔案以及相應的依賴庫與插入庫載入進記憶體生成對應的ImageLoader類的image(映象檔案)物件;
  • 5.連結主程式(必須先連結主程式後才能插入);
  • 6.連結所有的動態庫ImageLoaderimage(映象檔案)物件,並註冊插入的資訊,方便後續進行繫結;
  • 7.在連結完所有插入的動態庫映象檔案之後執行弱繫結;
  • 8.執行所有動態庫image的初始化方法initializeMainExecutable
  • 9.查詢主程式的入口點LC_MAIN並返回result結果,結束整個_dyld_start流程,進入我們Appmain()函式。

接下來我們分析第8步,initializeMainExecutable()

4.6initializeMainExecutable分析

void initializeMainExecutable()
{
    // record that we've reached this step
    gLinkContext.startedInitializingMainExecutable = true;
    
    // run initialzers for any inserted dylibs
    // 對每一個插入進來的 dylib 呼叫 runInitializers 方法進行初始化
    ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
    initializerTimes[0].count = 0;
    const size_t rootCount = sImageRoots.size();
    if ( rootCount > 1 ) {
        for(size_t i=1; i < rootCount; ++i) {
            sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
        }
    }
    
    // run initializers for main executable and everything it brings up 
    // 對主程式呼叫 runInitializers 方法初始化
    sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
    
    // register cxa_atexit() handler to run static terminators in all loaded images when this process exits
    // 註冊 cxa_atexit() 回撥以在此程序退出時在所有載入的影象中執行靜態終止符
    if ( gLibSystemHelpers != NULL ) 
        (*gLibSystemHelpers->cxa_atexit)(&runAllStaticTerminators, NULL, NULL);

    // dump info if requested
    if ( sEnv.DYLD_PRINT_STATISTICS )
        ImageLoader::printStatistics((unsigned int)allImagesCount(), initializerTimes[0]);
    if ( sEnv.DYLD_PRINT_STATISTICS_DETAILS )
        ImageLoaderMachO::printStatisticsDetails((unsigned int)allImagesCount(), initializerTimes[0]);
}

以上函式主要做了兩件事

  • 1.對每一個插入進來的dylib呼叫runInitializers方法進行初始化;
  • 2.對主程式呼叫runInitializers方法初始化。

4.7runInitializers分析

void ImageLoader::runInitializers(const LinkContext& context, InitializerTimingList& timingInfo)
{
    uint64_t t1 = mach_absolute_time();
    mach_port_t thisThread = mach_thread_self();
    ImageLoader::UninitedUpwards up;
    up.count = 1;
    up.imagesAndPaths[0] = { this, this->getPath() };
    // 呼叫 processInitializers
    processInitializers(context, thisThread, timingInfo, up);
    context.notifyBatch(dyld_image_state_initialized, false);
    mach_port_deallocate(mach_task_self(), thisThread);
    uint64_t t2 = mach_absolute_time();
    fgTotalInitTime += (t2 - t1);
}

4.8processInitializers實現

void ImageLoader::processInitializers(const LinkContext& context, mach_port_t thisThread,
                                     InitializerTimingList& timingInfo, ImageLoader::UninitedUpwards& images)
{
    uint32_t maxImageCount = context.imageCount()+2;
    ImageLoader::UninitedUpwards upsBuffer[maxImageCount];
    ImageLoader::UninitedUpwards& ups = upsBuffer[0];
    ups.count = 0;
    // Calling recursive init on all images in images list, building a new list of
    // uninitialized upward dependencies.
    for (uintptr_t i=0; i < images.count; ++i) {
        // 呼叫 recursiveInitialization
        images.imagesAndPaths[i].first->recursiveInitialization(context, thisThread, images.imagesAndPaths[i].second, timingInfo, ups);
    }
    // If any upward dependencies remain, init them.
    if ( ups.count > 0 )
        processInitializers(context, thisThread, timingInfo, ups);
}

4.9recursiveInitialization實現

void ImageLoader::recursiveInitialization(const LinkContext& context, mach_port_t this_thread, const char* pathToInitialize,
                                          InitializerTimingList& timingInfo, UninitedUpwards& uninitUps)
{
    recursive_lock lock_info(this_thread);
    recursiveSpinLock(lock_info);

    if ( fState < dyld_image_state_dependents_initialized-1 ) {
        uint8_t oldState = fState;
        // break cycles
        fState = dyld_image_state_dependents_initialized-1;
        try {
            // initialize lower level libraries first
            for(unsigned int i=0; i < libraryCount(); ++i) {
                ImageLoader* dependentImage = libImage(i);
                if ( dependentImage != NULL ) {
                    // don't try to initialize stuff "above" me yet
                    if ( libIsUpward(i) ) {
                        uninitUps.imagesAndPaths[uninitUps.count] = { dependentImage, libPath(i) };
                        uninitUps.count++;
                    }
                    else if ( dependentImage->fDepth >= fDepth ) {
                        dependentImage->recursiveInitialization(context, this_thread, libPath(i), timingInfo, uninitUps);
                    }
                }
            }
            
            // record termination order
            if ( this->needsTermination() )
                context.terminationRecorder(this);

            // let objc know we are about to initialize this image
            uint64_t t1 = mach_absolute_time();
            fState = dyld_image_state_dependents_initialized;
            oldState = fState;
            // 關鍵程式碼 begin ************
            context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
            
            // initialize this image
            bool hasInitializers = this->doInitialization(context);

            // let anyone know we finished initializing this image
            fState = dyld_image_state_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_initialized, this, NULL);
            // 關鍵程式碼 end ************
            
            if ( hasInitializers ) {
                uint64_t t2 = mach_absolute_time();
                timingInfo.addTime(this->getShortName(), t2-t1);
            }
        }
        catch (const char* msg) {
            // this image is not initialized
            fState = oldState;
            recursiveSpinUnLock();
            throw;
        }
    }
    
    recursiveSpinUnLock();
}

然後在recursiveInitialization的實現中發現關鍵程式碼notifySingle

context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);

4.10notifySingle分析

static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
    // 省略部分程式碼......
    
    if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
        uint64_t t0 = mach_absolute_time();
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
        (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        uint64_t t1 = mach_absolute_time();
        uint64_t t2 = mach_absolute_time();
        uint64_t timeInObjC = t1-t0;
        uint64_t emptyTime = (t2-t1)*100;
        if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
            timingInfo->addTime(image->getShortName(), timeInObjC);
        }
    }
    
    // 省略部分程式碼......
}

我們在這段程式碼裡面找到一個關鍵的函式指標*sNotifyObjCInit,我們看看這個指標是用來幹嘛用的,在當前檔案下,搜尋找到sNotifyObjCInit賦值的地方。

4.11registerObjCNotifiers實現

void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
    // record functions to call
    sNotifyObjCMapped   = mapped;
    sNotifyObjCInit     = init;
    sNotifyObjCUnmapped = unmapped;

    // 省略部分程式碼......
}

我們繼續全域性搜尋看看registerObjCNotifiers這個方法會被誰呼叫,找到呼叫的地方_dyld_objc_notify_register函式

4.12_dyld_objc_notify_register分析

void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped)
{
    dyld::registerObjCNotifiers(mapped, init, unmapped);
}

繼續搜尋,發現找不到_dyld_objc_notify_register方法的呼叫者,那麼問題來了,_dyld_objc_notify_register在啥時候呼叫了呢?

接下來我們在我們新建立的工程裡面,打個符號斷點

執行

4.13libdispatch_init分析

我們看到在呼叫函式棧在呼叫_objc_init之前,還呼叫了libdispatch_init_os_object_init

void
libdispatch_init(void)
{
    // 省略部分程式碼......
    _dispatch_hw_config_init();
    _dispatch_time_init();
    _dispatch_vtable_init();
    _os_object_init();
    _voucher_init();
    _dispatch_introspection_init();
}

我們在上面程式碼中找到了我們關鍵要檢視的程式碼_os_object_init(),我們跟蹤進去看看。

4.14_os_object_init分析

void
_os_object_init(void)
{
    _objc_init();
    Block_callbacks_RR callbacks = {
        sizeof(Block_callbacks_RR),
        (void (*)(const void *))&objc_retain,
        (void (*)(const void *))&objc_release,
        (void (*)(const void *))&_os_objc_destructInstance
    };
    _Block_use_RR2(&callbacks);
#if DISPATCH_COCOA_COMPAT
    const char *v = getenv("OBJC_DEBUG_MISSING_POOLS");
    if (v) _os_object_debug_missing_pools = _dispatch_parse_bool(v);
    v = getenv("DISPATCH_DEBUG_MISSING_POOLS");
    if (v) _os_object_debug_missing_pools = _dispatch_parse_bool(v);
    v = getenv("LIBDISPATCH_DEBUG_MISSING_POOLS");
    if (v) _os_object_debug_missing_pools = _dispatch_parse_bool(v);
#endif
}

我們看到裡面呼叫了_objc_init(),這就證明了從_os_object_init跳轉到_objc_init,然後進行Runtime的初始化操作,我們繼續下面_objc_init的分析。

4.15_objc_init分析

開啟Objc原始碼,搜尋_objc_init,看一下實現的原始碼部分

void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    environ_init();
    tls_init();
    static_init();
    runtime_init();
    exception_init();
    cache_init();
    _imp_implementationWithBlock_init();
    
    // 註冊回撥函式
    _dyld_objc_notify_register(&map_images, load_images, unmap_image);

#if __OBJC2__
    didCallDyldNotifyRegister = true;
#endif
}

然後我們在函式內部找到了_dyld_objc_notify_register(),我們看一下這個函式的註釋部分

/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time

* 載入程式初始化。用 dyld 註冊我們的 image 通知程式。
* 在庫初始化之前由 libSystem 呼叫
**********************************************************************/

註釋的意思就是說這個函式_objc_init的呼叫時機是在其他動態庫載入之前由libSystem系統庫先呼叫的。

那麼到這裡就很明確了,其實在dyld::_main主程式的第8步,初始化所有動態庫及主程式的時候之前,就先註冊了load_images的回撥,之後在Runtime呼叫load_images載入完所有load方法之後,就會回撥到dyld::_maininitializeMainExecutable()內部執行回撥。

4.16doInitialization分析

bool ImageLoaderMachO::doInitialization(const LinkContext& context)
{
    CRSetCrashLogMessage2(this->getPath());

    // mach-o has -init and static initializers
    doImageInit(context);
    doModInitFunctions(context);
    
    CRSetCrashLogMessage2(NULL);
    
    return (fHasDashInit || fHasInitializers);
}

doModInitFunctions中,會呼叫c++的構造方法。

4.17 主程式main入口

// find entry point for main executable
result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();

5、dyld載入流程

_objc_init的完整呼叫流程

程式啟動

_dyld_start

->dyldbootstrap::start

->dyld::_main

->dyld::initializeMainExecutable

->ImageLoader::runInitializers

->ImageLoader::processInitializers

->ImageLoader::recursiveInitialization

->doInitialization

->libSystem_initializer(libSystem.B.dylib)

->_os_object_init(libdispatch.dylib)

->_objc_init(libobjc.A.dylib)

6、總結

注意

引用

1:iOS-底層原理 15:dyld載入流程

2:iOS 應用程式載入

3:OC底層-應用程式載入初探

4:啟動流程分析

5:dyld 載入流程分析

6:底層原理十五:dyld 應用程式載入

7:iOS dyld載入流程

8:OC底層原理十五:dyld 應用程式載入