Python生成詞雲圖
1.整體簡介
詞雲圖,也叫文字雲,是對文字中出現頻率較高的“關鍵詞”予以視覺化的展現,詞雲圖過濾掉大量的低頻低質的文字資訊,使得瀏覽者只要一眼掃過文字就可領略文字的主旨。
基於Python的詞雲生成類庫,很好用,而且功能強大。在做統計分析的時候有著很好的應用,比較推薦。
github:https://github.com/amueller/word_cloud
官方地址:https://amueller.github.io/word_cloud/
2.快速生成詞雲
#匯入所需庫 from wordcloud import WordCloud f = open(r'C:\Users\JluTIger\Desktop\texten.txt','r').read() wordcloud = WordCloud(background_color="white",width=1000, height=860, margin=2).generate(f) # width,height,margin可以設定圖片屬性 # generate 可以對全部文字進行自動分詞,但是對中文支援不好 # 可以設定font_path引數來設定字型集 #background_color引數為設定背景顏色,預設顏色為黑色 import matplotlib.pyplot as plt plt.imshow(wordcloud) plt.axis("off") plt.show() wordcloud.to_file('test.png') # 儲存圖片,但是在第三模組的例子中 圖片大小將會按照 mask 儲存
- 執行時遇到的問題:
報錯:(unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escap
- 原因及解決辦法:
文件我是放在桌面裡的,起初讀取文件的命令是:f = open('C:\Users\JluTIger\Desktop\texten.txt','r').read()
一直報錯:(unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape
後來發現,在Python中\是轉義符,\u表示其後是UNICODE編碼,因此\User在這裡會報錯,在字串前面加個r表示就可以了
- 效果:
3.自定義字型顏色
下段程式碼來自wordcloud官方的github。
#!/usr/bin/env python """ Colored by Group Example ======================== Generating a word cloud that assigns colors to words based on a predefined mapping from colors to words 基於顏色到單次的對映,將顏色分配給單次,生成詞雲。 """ from wordcloud import (WordCloud, get_single_color_func) import matplotlib.pyplot as plt class SimpleGroupedColorFunc(object): """Create a color function object which assigns EXACT colors to certain words based on the color to words mapping 建立一個顏色函式物件,它根據顏色到單詞的對映關係,為單詞分配精準的顏色。 Parameters 引數 ---------- color_to_words : dict(str -> list(str)) A dictionary that maps a color to the list of words. default_color : str Color that will be assigned to a word that's not a member of any value from color_to_words. """ def __init__(self, color_to_words, default_color): self.word_to_color = {word: color for (color, words) in color_to_words.items() for word in words} self.default_color = default_color def __call__(self, word, **kwargs): return self.word_to_color.get(word, self.default_color) class GroupedColorFunc(object): """Create a color function object which assigns DIFFERENT SHADES of specified colors to certain words based on the color to words mapping. Uses wordcloud.get_single_color_func Parameters ---------- color_to_words : dict(str -> list(str)) A dictionary that maps a color to the list of words. default_color : str Color that will be assigned to a word that's not a member of any value from color_to_words. """ def __init__(self, color_to_words, default_color): self.color_func_to_words = [ (get_single_color_func(color), set(words)) for (color, words) in color_to_words.items()] self.default_color_func = get_single_color_func(default_color) def get_color_func(self, word): """Returns a single_color_func associated with the word""" try: color_func = next( color_func for (color_func, words) in self.color_func_to_words if word in words) except StopIteration: color_func = self.default_color_func return color_func def __call__(self, word, **kwargs): return self.get_color_func(word)(word, **kwargs) #text是要分析的文字內容 text = """The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!""" # Since the text is small collocations are turned off and text is lower-cased wc = WordCloud(collocations=False).generate(text.lower()) # 自定義所有單詞的顏色 color_to_words = { # words below will be colored with a green single color function '#00ff00': ['beautiful', 'explicit', 'simple', 'sparse', 'readability', 'rules', 'practicality', 'explicitly', 'one', 'now', 'easy', 'obvious', 'better'], # will be colored with a red single color function 'red': ['ugly', 'implicit', 'complex', 'complicated', 'nested', 'dense', 'special', 'errors', 'silently', 'ambiguity', 'guess', 'hard'] } # Words that are not in any of the color_to_words values # will be colored with a grey single color function #不屬於上述設定的顏色詞的詞語會用灰色來著色 default_color = 'grey' # Create a color function with single tone # grouped_color_func = SimpleGroupedColorFunc(color_to_words, default_color) # Create a color function with multiple tones grouped_color_func = GroupedColorFunc(color_to_words, default_color) # Apply our color function # 如果你也可以將color_func的引數設定為圖片,詳細的說明請看 下一部分 wc.recolor(color_func=grouped_color_func) # 畫圖 plt.figure() plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.show()
- 效果:
4.利用背景圖片生成詞雲
該段程式碼主要來自於wordcloud的github,你同樣可以在github下載該例子以及原圖片與效果圖。wordcloud會把背景圖中白色區域去除,只在有色區域進行繪製。
#!/usr/bin/env python """ Image-colored wordcloud ======================= You can color a word-cloud by using an image-based coloring strategy implemented in ImageColorGenerator. It uses the average color of the region occupied by the word in a source image. You can combine this with masking - pure-white will be interpreted as 'don't occupy' by the WordCloud object when passed as mask. If you want white as a legal color, you can just pass a different image to "mask", but make sure the image shapes line up. """ #匯入必要的庫 from os import path from PIL import Image import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator # Read the whole text. text = open(r'C:\Users\JluTIger\Desktop\texten.txt').read() # read the mask / color image taken from # http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010 alice_coloring = np.array(Image.open(r"C:\Users\JluTIger\Desktop\alice.png")) # 設定停用詞 stopwords = set(STOPWORDS) stopwords.add("said") # 你可以通過 mask 引數 來設定詞雲形狀 wc = WordCloud(background_color="white", max_words=2000, mask=alice_coloring, stopwords=stopwords, max_font_size=40, random_state=42) # generate word cloud wc.generate(text) # create coloring from image image_colors = ImageColorGenerator(alice_coloring) # show # 在只設置mask的情況下,你將會得到一個擁有圖片形狀的詞雲 plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.figure() # recolor wordcloud and show # we could also give color_func=image_colors directly in the constructor # 我們還可以直接在建構函式中直接給顏色 # 通過這種方式詞雲將會按照給定的圖片顏色佈局生成字型顏色策略 plt.imshow(wc.recolor(color_func=image_colors), interpolation="bilinear") plt.axis("off") plt.figure() plt.imshow(alice_coloring, cmap=plt.cm.gray, interpolation="bilinear") plt.axis("off") plt.show()
- 請注意自己的路徑設定
- 原圖
- 效果:
原文:https://www.cnblogs.com/jlutiger/p/9176517.html