【北京大學】9 TensorFlow1.x的實現自定義Mnist資料集
阿新 • • 發佈:2020-12-22
技術標籤:機器學習Pythonpythontensorflowmnist資料集
目錄
1 實現把任意圖片放進訓練好的網路進行測試
輸入的圖片是白底黑字的數字圖片進行測試,測試前需要做兩步
(1)轉換圖片矩陣大小為28*28符合網路的輸入
(2)把圖片的轉換成白字黑底的黑白圖片
mnist_app. py
import tensorflow as tf
import numpy as np
from PIL import Image
import mnist_backward
import mnist_forward
def restore_model(testPicArr):
# 利用tf.Graph()復現之前定義的計算圖
with tf.Graph().as_default() as tg:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
# 呼叫mnist_forward檔案中的前向傳播過程forword()函式
y = mnist_forward.forward(x, None)
# 得到概率最大的預測值
preValue = tf.argmax(y, 1)
# 例項化具有滑動平均的saver物件
variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
with tf.Session() as sess:
# 通過ckpt獲取最新儲存的模型
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
preValue = sess.run(preValue, feed_dict={x: testPicArr})
return preValue
else:
print("No checkpoint file found")
return -1
# 預處理,包括resize,轉變灰度圖,二值化
def pre_pic(picName):
img = Image.open(picName)
reIm = img.resize((28, 28), Image.ANTIALIAS)
#把圖片轉換為灰度值圖片
im_arr = np.array(reIm.convert('L'))
# 對圖片做二值化處理(這樣以濾掉噪聲,另外除錯中可適當調節閾值)
threshold = 50
# 模型的要求是黑底白字,但輸入的圖是白底黑字,所以需要對每個畫素點的值改為255減去原值以得到互補的反色。
for i in range(28):
for j in range(28):
im_arr[i][j] = 255 - im_arr[i][j]
if (im_arr[i][j] < threshold):
im_arr[i][j] = 0
else:
im_arr[i][j] = 255
# 把圖片形狀拉成1行784列,並把值變為浮點型(因為要求畫素點是0-1 之間的浮點數)
nm_arr = im_arr.reshape([1, 784])
nm_arr = nm_arr.astype(np.float32)
# 接著讓現有的RGB圖從0-255之間的數變為0-1之間的浮點數
img_ready = np.multiply(nm_arr, 1.0 / 255.0)
return img_ready
def application():
# 輸入要識別的幾張圖片
testNum = int(input("input the number of test pictures:"))
for i in range(testNum):
# 給出待識別圖片的路徑和名稱
testPic = input("the path of test picture:")
# 圖片預處理
testPicArr = pre_pic(testPic)
# 獲取預測結果
preValue = restore_model(testPicArr)
print("The prediction number is:", preValue)
def main():
application()
if __name__ == '__main__':
main()
2 實現製作資料
2.1 簡介
(1)資料集可以生成二進位制的tfrecords檔案。先將圖片和標籤製作成該格式的檔案,使用tfrecords進行資料讀取,會提高記憶體利用率。
(2)用tf.train.Example的協議儲存訓練情況,訓練資料的特徵用鍵值對的形式表示。
(3)用SerializeToString()把資料序列化為字串儲存。
2.2 生成tfrecords檔案
writer = tf.python_io.TFRecordWriter(tfRecordName)
# 把每張圖片和標籤封裝到example中
example = tf.train.Example(features=tf.train.Features(feature={
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),# img_raw放入原始圖片
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))# labels是圖片的標籤
}))
# 把example進行序列化
writer.write(example.SerializeToString())
# 關閉writer
writer.close()
2.3 解析tfrecords檔案
# 該函式會生成一個先入先出的佇列,檔案閱讀器會使用它來讀取資料
filename_queue = tf.train.string_input_producer([tfRecord_path], shuffle=True)
# 新建一個reader
reader = tf.TFRecordReader()
# 把讀出的每個樣本儲存在serialized_example中進行解序列化,標籤和圖片的鍵名應該和製作tfrecords的鍵名相同,其中標籤給出幾分類。
_, serialized_example = reader.read(filename_queue)
# 將tf.train.Example協議記憶體塊(protocol buffer)解析為張量
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([10], tf.int64),
'img_raw': tf.FixedLenFeature([], tf.string)
})
# 將img_raw字串轉換為8位無符號整型
img = tf.decode_raw(features['img_raw'], tf.uint8)
# 將形狀變為一行784列
img.set_shape([784])
img = tf.cast(img, tf.float32) * (1. / 255)
# 變成0到1之間的浮點數
label = tf.cast(features['label'], tf.float32)
2.4 生成自定義資料的完整程式碼
讀取的檔案格式是。圖片檔名+空格+標籤
mnist_generateds.py檔案
#mnist_generateds.py
# coding:utf-8
import tensorflow as tf
import numpy as np
from PIL import Image
import os
image_train_path = './mnist_data_jpg/mnist_train_jpg_60000/'
label_train_path = './mnist_data_jpg/mnist_train_jpg_60000.txt'
tfRecord_train = './data/mnist_train.tfrecords'
image_test_path = './mnist_data_jpg/mnist_test_jpg_10000/'
label_test_path = './mnist_data_jpg/mnist_test_jpg_10000.txt'
tfRecord_test = './data/mnist_test.tfrecords'
data_path = './data'
resize_height = 28
resize_width = 28
# 生成tfrecords檔案
def write_tfRecord(tfRecordName, image_path, label_path):
# 新建一個writer
writer = tf.python_io.TFRecordWriter(tfRecordName)
num_pic = 0
f = open(label_path, 'r')
contents = f.readlines()
f.close()
# 迴圈遍歷每張圖和標籤
for content in contents:
value = content.split()
img_path = image_path + value[0]
img = Image.open(img_path)
img_raw = img.tobytes()#圖片轉換為二進位制資料
labels = [0] * 10
labels[int(value[1])] = 1
# 把每張圖片和標籤封裝到example中
example = tf.train.Example(features=tf.train.Features(feature={
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=labels))
}))
# 把example進行序列化
writer.write(example.SerializeToString())
num_pic += 1#每完成一張圖片,計數器加1
print("the number of picture:", num_pic)
# 關閉writer
writer.close()
print("write tfrecord successful")
def generate_tfRecord():
isExists = os.path.exists(data_path)
if not isExists:
os.makedirs(data_path)
print('The directory was created successfully')
else:
print('directory already exists')
write_tfRecord(tfRecord_train, image_train_path, label_train_path)
write_tfRecord(tfRecord_test, image_test_path, label_test_path)
# 解析tfrecords檔案
def read_tfRecord(tfRecord_path):
# 該函式會生成一個先入先出的佇列,檔案閱讀器會使用它來讀取資料
filename_queue = tf.train.string_input_producer([tfRecord_path], shuffle=True)
# 新建一個reader
reader = tf.TFRecordReader()
# 把讀出的每個樣本儲存在serialized_example中進行解序列化,標籤和圖片的鍵名應該和製作tfrecords的鍵名相同,其中標籤給出幾分類。
_, serialized_example = reader.read(filename_queue)
# 將tf.train.Example協議記憶體塊(protocol buffer)解析為張量
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([10], tf.int64),# 10表示標籤的分類數量
'img_raw': tf.FixedLenFeature([], tf.string)
})
# 將img_raw字串轉換為8位無符號整型
img = tf.decode_raw(features['img_raw'], tf.uint8)
# 將形狀變為一行784列
img.set_shape([784])
img = tf.cast(img, tf.float32) * (1. / 255)
# 變成0到1之間的浮點數
label = tf.cast(features['label'], tf.float32)
# 返回圖片和標籤
return img, label
def get_tfrecord(num, isTrain=True):
if isTrain:
tfRecord_path = tfRecord_train
else:
tfRecord_path = tfRecord_test
img, label = read_tfRecord(tfRecord_path)
# 隨機讀取一個batch的資料,打亂資料
img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size=num,
num_threads=2,# 執行緒
capacity=1000,
min_after_dequeue=700)
# 返回的圖片和標籤為隨機抽取的batch_size組
return img_batch, label_batch
def main():
generate_tfRecord()
if __name__ == '__main__':
main()
在反向傳播mnistbackward.py和測試程式mnist_test.py中修改圖片標籤的介面。使用執行緒協調器,方法如下
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess = sess,coord = coord)
#圖片和標籤的批獲取
coord.request_stop()
coord.join(threads)
mnist_backward.py檔案
執行緒協調器的程式碼是用################################################括起來的
#mnist_backward.py
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
import mnist_generateds # 1
BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"
# 手動給出訓練的總樣本數6萬
train_num_examples = 60000 # 給出資料集的數量
def backward():
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, REGULARIZER)
global_step = tf.Variable(0, trainable=False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
train_num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
# 一次批獲取 batch_size張圖片和標籤
################################################
img_batch, label_batch = mnist_generateds.get_tfrecord(BATCH_SIZE, isTrain=True) # 3
################################################
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
################################################
# 利用多執行緒提高圖片和標籤的批獲取效率
coord = tf.train.Coordinator() # 4
# 啟動輸入佇列的執行緒
threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 5
################################################
for i in range(STEPS):
################################################
# 執行圖片和標籤的批獲取
xs, ys = sess.run([img_batch, label_batch]) # 6
################################################
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
################################################
# 關閉執行緒協調器
coord.request_stop() # 7
coord.join(threads) # 8
################################################
def main():
backward() # 9
if __name__ == '__main__':
main()
mnist_test.py檔案
執行緒協調器的程式碼是用################################################括起來的
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
import mnist_generateds
TEST_INTERVAL_SECS = 5
# 手動給出測試的總樣本數1萬
TEST_NUM = 10000 # 1
def test():
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, None)
ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
################################################
# 用函式get_tfrecord替換讀取所有測試集1萬張圖片
img_batch, label_batch = mnist_generateds.get_tfrecord(TEST_NUM, isTrain=False) # 2
################################################
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
################################################
# 利用多執行緒提高圖片和標籤的批獲取效率
coord = tf.train.Coordinator() # 3
# 啟動輸入佇列的執行緒
threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 4
# 執行圖片和標籤的批獲取
xs, ys = sess.run([img_batch, label_batch]) # 5
################################################
accuracy_score = sess.run(accuracy, feed_dict={x: xs, y_: ys})
print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
################################################
# 關閉執行緒協調器
coord.request_stop() # 6
coord.join(threads) # 7
################################################
else:
print('No checkpoint file found')
return
time.sleep(TEST_INTERVAL_SECS)
def main():
test() # 8
if __name__ == '__main__':
main()