關於Training deep neural networks for binary communication with the Whetstone method的程式碼實現
GitHub網址如下:
https://github.com/SNL-NERL/Whetstone/blob/master/examples/adaptive_mnist.py
實現過程中解決的問題:
1.Ubuntu下,python+TensorFlow+Keras版本問題
經檢驗,配置版本為python3.8.5+TensorFlow2.2.0+Keras2.3.1可行
2.關於磨刀石演算法包的載入
直接pip install whetstone 即可
3.執行程式時,會報錯顯示“模組whetstone不存在layers屬性”
解決方法,下載github中的包,並將whetstone中的py檔案拖到指定位置
開啟終端
python
>>> import sys
>>> sys.path
以上,解決程式碼執行問題
相關推薦
關於Training deep neural networks for binary communication with the Whetstone method的程式碼實現
技術標籤:文獻閱讀脈衝神經網路 GitHub網址如下: https://github.com/SNL-NERL/Whetstone/blob/master/examples/adaptive_mnist.py 實現過程中解決的問題: 1.Ubuntu下,python+TensorFlow+Keras版本問題 經檢
SNN_文獻閱讀_Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition
兩種方法將CNN轉化成為SNN: 直接訓練一個類似CNN架構的SNN「雖然有類似於STDP等無監督方法,但是處於起步狀態」
【論文筆記】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷積神經網路普遍使用3×3的卷積神經網路,通過堆疊3×3的卷積核和下采樣層,會在減少影象的大小的同時增加
深度學習論文翻譯解析(九):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
論文標題:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 標題翻譯:用於視覺識別的深度卷積神經網路中的空間金字塔池
Very Deep Convolutional Networks for Large-Scale Image Recognition-VGGNet解讀
作者:HYH 日期:2020-9-10 論文期刊:ICLR2015 標籤:VGG 論文:《Very Deep Convolutional Networks for Large-Scale Image Recognition》
[CVPR 2020] 3DRegNet: A Deep Neural Network for 3D Point Registration
零、概要 論文: 3DRegNet: A Deep Neural Network for 3D Point Registrationtag: CVPR 2020; Registration程式碼: https://github.com/3DVisionISR/3DRegNet作者: G. Dias Pais, Srikumar Ramalingam, Ven
《A Joint Neural Model for Information Extraction with Global Features》論文筆記
2020 ACL會議《A Joint Neural Model for Information Extraction with Global Features》 論文地址 該論文提出一個名為ONEIE的資訊抽取框架,增加一個全域性特徵,在例項之間和子任務之間進行聯合決策。
論文閱讀筆記《Convolutional Neural Networks for Steel Surface Defect Detection from Photometric Stereo》
小樣本學習&元學習經典論文整理||持續更新 核心思想 本文提出一種使用光度立體影象(Photometric Stereo Images)對鋼軌表面缺陷進行檢測的方法,關於光度立體影象我沒找到特別詳細的介紹,大體的概
Neural Architecture Search using Deep Neural Networks and Monte Carlo Tree Search
發表時間:2019(AAAI2020) 文章要點:一篇做NAS的文章,主要想法就是用MCTS來做NAS,相對random,Q-learning,Hill Climbing這些更能平衡探索與利用。主要方法是把NAS的問題定義好,比如動作是什麼,就是每次搭
[論文理解] Quantizing Deep Convolutional Networks For Efficient Inference A Whitepaper
Quantizing Deep Convolutional Networks For Efficient Inference A Whitepaper Question:到底加速在哪?
【論文閱讀】Deep Neural Classifiers for EEG-Based Emotion Recognition in Immersive Environments
1.這篇文章究竟講了什麼問題? VR環境下,基於EEG訊號,以及神經網路分類器的表情識別(情感類別:刺激)
論文翻譯:2018_Source localization using deep neural networks in a shallow water environment
論文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神經網路在淺水環境中的源定位
[轉]Must Know Tips/Tricks in Deep Neural Networks閱讀筆記
http://www.fenghz.xyz/Must-Know-Tips-in-DL/ Must Know Tips/Tricks in Deep Neural Networks閱讀筆記
Deep neural networks using a single neuron(使用單個神經元的深度神經網路)
提出了一種將任意大小的深度神經網路摺疊成具有多個時間延遲反饋迴路的單個神經元的方法,稱為Folded-in-time DNN。
AlexNet論文(ImageNet Classification with Deep Convolutional Neural Networks)學習筆記
ImageNet Classification with Deep Convolutional Neural Networks學習筆記 第一個典型的CNN是LeNet5網路結構,但是第一個引起大家注意的網路卻是本論文所提出的AlexNet。這篇文章的AlexNet網路是在2012年
論文閱讀筆記: Cyclical Learning Rates For Training Neural Networks
Cyclical Learning Rates For Training Neural Networks 2017 Leslie N. Smith 本文貢獻: 提出一種新的名為cyclical learning rates的方式來設定學習率,並以此消除了在全域性學習率最優值選擇和選取策略上過多依賴於
【DMCP】2020-CVPR-DMCP Differentiable Markov Channel Pruning for Neural Networks-論文閱讀
DMCP 2020-CVPR-DMCP Differentiable Markov Channel Pruning for Neural Networks Shaopeng Guo(sensetime 商湯)
CCS - Baseband Digital Transmission - Optimum Receiver for the AWGN Channel - Simulation of a Binary Communication System
Simulation of a Binary Communication System Monte Carlo computer simulations are usually performed in practice to estimate theprobability of error of a digital communication system, especially in case
CCS - Baseband Digital Transmission - Signal Constellation Diagrams for Binary Signals -Signal Waveforms with Multiple Amplitude Levels (M = 2, 4, 8, 16)
Signal Waveforms with Multiple Amplitude Levels Matlab Coding, 1 % MATLAB script for the probability of a symbol error for M = 2, 4, 8, 16
deep learning and neural networks--handwriting recongnization
use an algorithm to separate the letters from sentences. ( kind of classifier) the architecture of neural networks: