1. 程式人生 > 其它 >zcmu 1549: 組合數(盧卡斯定理)

zcmu 1549: 組合數(盧卡斯定理)

技術標籤:數論

題目連結:https://acm.zcmu.edu.cn/JudgeOnline/problem.php?id=1549

題目大意

給你n,m,p,要你求組合數C(n, m)%p

範圍:(1 <= m <= n <= 10^9, m <= 10^4, 0< p <100 , p是素數)

思路

n和m範圍很大,直接求C會t,但是這裡模數p很小,那麼可以從p下手。

C(n, m) = n! * (n - m)! % p * m! % p

應用一下 盧卡斯定理:對於非負整數m,n和質數p

C_{n}^{m}\equiv \prod_{i=0}^{k}C_{m_i}^{n_i} (mod \ p),其中m = m_kp^k+...+m_1p+m_0,n = n_kp^k+...+n_1p+n_0是m和n的p進位制展開

當n<m的時候,規定C_{n}^{m}=0

ac程式碼

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn = 105;
ll fac[maxn], inv[maxn], p;
// fac[i]表示i的階乘對p取模
// inv[i]表示i的階乘的逆元對p取模
void init(ll n){
    fac[0] = 1;
    for(int i = 1; i <= n; i ++) fac[i] = fac[i - 1] * i % p;
    inv[n] = _pow(fac[n], p - 2);
    for(int i = n - 1; i >= 0; i --) inv[i] = inv[i + 1] * (i + 1) % p;
}
ll C(ll n, ll m){
    if(n < m) return 0;
    return fac[n] * inv[m] % p * inv[n - m] % p;
}
ll lucas(ll n, ll m){//盧卡斯定理
    if(m == 0) return 1 % p;
    return lucas(n / p, m / p) * C(n % p, m % p) % p;
}
ll _pow(ll a, ll b){
    ll ans = 1;
    while(b){
        if(b & 1) ans = ans * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return ans;
}
int main(){
    int t; scanf("%d", &t);
    while(t --){
        ll n, m;
        scanf("%lld%lld%lld",&n,&m,&p);
        init(p - 1);
        printf("%lld\n", lucas(n, m));
    }
    return 0;
}