1. 程式人生 > 其它 >預訓練模型transformers綜合總結(二)

預訓練模型transformers綜合總結(二)

技術標籤:深度學習自然語言處理

接著第一部分,這裡寫如何使用自定義資料集,呼叫transformers庫去訓練模型,其實感覺本質就是如何把資料集合理讀取進來。

文字分類

使用aclImdb資料集,我比較傾向於直接用list把文字給讀取進來

(一)資料準備

#資料讀取
from pathlib import Path

def read_imdb_split(split_dir):
    split_dir = Path(split_dir)
    texts = []
    labels = []
    for label_dir in ["pos", "neg"]:
        for text_file in (split_dir/label_dir).iterdir():
            texts.append(text_file.read_text())
            labels.append(0 if label_dir is "neg" else 1)

    return texts, labels

train_texts, train_labels = read_imdb_split('aclImdb/train')
test_texts, test_labels = read_imdb_split('aclImdb/test')
#資料處理
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)

##分詞
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
##文字向量化
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)

(二)管道搭建

1.使用pytorch的方式實現

import torch

class IMDbDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)

train_dataset = IMDbDataset(train_encodings, train_labels)
val_dataset = IMDbDataset(val_encodings, val_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)

2.使用tensorflow的方式實現

import tensorflow as tf

train_dataset = tf.data.Dataset.from_tensor_slices((
    dict(train_encodings),
    train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
    dict(val_encodings),
    val_labels
))
test_dataset = tf.data.Dataset.from_tensor_slices((
    dict(test_encodings),
    test_labels
))

(三)訓練模式

1.使用自帶訓練函式訓練

(1)使用pytorch的方式實現

model_path="H:\\code\\Model\\distilbert-base-cased\\"
from transformers import DistilBertForSequenceClassification, Trainer, TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',          # output directory
    num_train_epochs=3,              # total number of training epochs
    per_device_train_batch_size=16,  # batch size per device during training
    per_device_eval_batch_size=64,   # batch size for evaluation
    warmup_steps=500,                # number of warmup steps for learning rate scheduler
    weight_decay=0.01,               # strength of weight decay
    logging_dir='./logs',            # directory for storing logs
    logging_steps=10,
)

model = DistilBertForSequenceClassification.from_pretrained(model_path)

trainer = Trainer(
    model=model,                         # the instantiated