1. 程式人生 > 其它 >Python三十個常見的指令碼彙總

Python三十個常見的指令碼彙總

目錄
這篇部落格寫的不錯:BlockingQueue

LinkedBlockingQueue書上講的是無界佇列,其實不是特別嚴謹,因為佇列的容量是可以通過有參建構函式設定的,並且無參時,預設是Integer.MAX_VALUE

根據名子Linked,可以知道這是用連結串列實現的佇列

成員變數

/** 佇列容量,預設Integer.MAX_VALUE */
private final int capacity;

/** 當前佇列元素數量 */
private final AtomicInteger count = new AtomicInteger();

/**
 * 連結串列的head
 */
transient Node<E> head;

/**
 * 連結串列的tail
 */
private transient Node<E> last;

/** 由take, poll方法持有的鎖 */
private final ReentrantLock takeLock = new ReentrantLock();

/** 當take的時候,如果佇列為空,則等待 */
private final Condition notEmpty = takeLock.newCondition();

/** 由put, offer方法持有的鎖 */
private final ReentrantLock putLock = new ReentrantLock();

/** 當put的時候,如果佇列滿了,則等待 */
private final Condition notFull = putLock.newCondition();

有一個靜態內部類,定義了連結串列節點:

    static class Node<E> {
        E item;

        /**
         * One of:
         * - the real successor Node
         * - this Node, meaning the successor is head.next
         * - null, meaning there is no successor (this is the last node)
         */
        Node<E> next;

        Node(E x) { item = x; }
    }

方法

// 返回此佇列中的元素數量。
public int size()

// 返回此佇列在理想情況下(在沒有記憶體或資源約束的情況下)可以不阻塞地接受新元素的數量。它總是等於這個佇列的初始容量減去這個佇列的當前大小。
public int remainingCapacity()

// 將指定的元素插入到此佇列的末尾,如果需要,則等待空間可用。
public void put(E e) throws InterruptedException

// 將指定的元素插入到此佇列的末尾,如有必要,將等待指定的等待時間,直到空間可用為止。超時則返回false。
public boolean offer(E e,
                     long timeout,
                     TimeUnit unit)
              throws InterruptedException

// 在不超過佇列容量的情況下立即在佇列末尾插入指定的元素,如果成功則返回true,如果佇列已滿則返回false。當使用容量受限的佇列時,此方法通常比add方法更好,後者插入失敗僅丟擲異常。
public boolean offer(E e)

// 檢索並刪除此佇列的頭,如有必要則等待,直到某個元素可用為止。
public E take() throws InterruptedException

// 檢索並刪除此佇列的頭,如有必要,將等待指定的等待時間,直到元素可用。超時返回null。
public E poll(long timeout, TimeUnit unit) throws InterruptedException

// 檢索並刪除此佇列的頭,如果此佇列為空,則返回null。
public E poll()

// 檢索並刪除此佇列的頭,如果此佇列為空,則返回null。
public E peek()

// 如果指定元素存在,則從此佇列中移除該元素的單個例項。更正式地說,如果佇列中包含一個或多個這樣的元素,則只刪除第一個匹配到的元素。
public boolean remove(Object o)

// 如果此佇列包含至少一個指定的元素,則返回true。
public boolean contains(Object o)

// 返回一個數組,該陣列包含此佇列中的所有元素,按適當的順序排列。返回的陣列將是“安全的”,因為此佇列不維護對它的引用。
public Object[] toArray()

// 返回一個數組,該陣列包含此佇列中的所有元素,按適當的順序排列;返回陣列的執行時型別是指定陣列的執行時型別。
public <T> T[] toArray(T[] a)

// 返回此集合的字串表示形式。
public String toString()

// 刪除此佇列中的所有元素。此呼叫返回後,佇列將為空。
public void clear()

// 從此佇列中刪除所有可用元素並將它們新增到給定集合中。此操作可能比重複輪詢此佇列更有效。在試圖將元素新增到集合c時遇到失敗丟擲相關異常時可能會導致:元素不在原集合或者集合c中,或者兩個集合中都沒有。
public int drainTo(Collection<? super E> c)

// 從該佇列中最多刪除給定數量的可用元素,並將它們新增到給定集合中。異常情況同上
public int drainTo(Collection<? super E> c, int maxElements)

// 按適當的順序返回此佇列中元素的迭代器。元素將按從第一個(head)到最後一個(tail)的順序返回。返回的迭代器是弱一致的。
public Iterator<E> iterator()

// 返回該佇列中元素的Spliterator。返回的spliterator是弱一致的。
public Spliterator<E> spliterator()

方法原始碼閱讀

重點還是關注offer,put,poll,take

enqueue(Node node)

執行將新的節點放入連結串列末尾的操作

    /**
     * Links node at end of queue.
     *
     * @param node the node
     */
    private void enqueue(Node<E> node) {
        // assert putLock.isHeldByCurrentThread();
        // assert last.next == null;
        last = last.next = node;
        //這個方法的作用:
        //1.將last.next設定為node
        //2.將last更新為node,或者或更新last為新的連結串列末尾
        //程式碼等效為:
        last.next = node;
        last = last.next;
    }

signalNotEmpty()

    /**
     * Signals a waiting take. Called only from put/offer (which do not
     * otherwise ordinarily lock takeLock.)
     */
    private void signalNotEmpty() {
        final ReentrantLock takeLock = this.takeLock;
        //因為要傳送notEmpty訊號,即允許進行出隊操作
        //因此這個時候應該禁止並行的出隊
        //所以要對take操作進行加鎖
        takeLock.lock();
        try {
            notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
    }

offer(E e)

新增新元素入隊

    /**
     * Inserts the specified element at the tail of this queue if it is
     * possible to do so immediately without exceeding the queue's capacity,
     * returning {@code true} upon success and {@code false} if this queue
     * is full.
     * When using a capacity-restricted queue, this method is generally
     * preferable to method {@link BlockingQueue#add add}, which can fail to
     * insert an element only by throwing an exception.
     *
     * @throws NullPointerException if the specified element is null
     */
    public boolean offer(E e) {
        if (e == null) throw new NullPointerException();
        //先拿到當前長度count
        final AtomicInteger count = this.count;
        if (count.get() == capacity)
            return false;
        int c = -1;
        //將e封裝成連結串列節點node
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        //加鎖
        putLock.lock();
        try {
            if (count.get() < capacity) {
                //還有容量時,將node放在連結串列的末尾
                enqueue(node);
                //getAndIncrement返回的還是新增之前的數值
                c = count.getAndIncrement();
                //所以這裡判斷還是需要進行c + 1
                //如果新增之後,還有容量,傳送notFull訊號,說明佇列還能繼續新增
                if (c + 1 < capacity)
                    notFull.signal();
            }
        } finally {
            //解鎖
            putLock.unlock();
        }
        //如果c==0,說明佇列中只有一個節點,即狀態從空變為非空
        //因此可以傳送notEmpty訊號
        if (c == 0)
            signalNotEmpty();
        return c >= 0;
    }

offer(E e, long timeout, TimeUnit unit)

與offer差不多,就是加了個時間等待,與ArrayBlockingQueue等待的操作一樣

/**
     * Inserts the specified element at the tail of this queue, waiting if
     * necessary up to the specified wait time for space to become available.
     *
     * @return {@code true} if successful, or {@code false} if
     *         the specified waiting time elapses before space is available
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public boolean offer(E e, long timeout, TimeUnit unit)
        throws InterruptedException {

        if (e == null) throw new NullPointerException();
        long nanos = unit.toNanos(timeout);
        int c = -1;
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            while (count.get() == capacity) {
                if (nanos <= 0)
                    return false;
                nanos = notFull.awaitNanos(nanos);
            }
            enqueue(new Node<E>(e));
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
        return true;
    }

put(E e)

進行入隊操作,但是增加了阻塞等待的機制

 /**
     * Inserts the specified element at the tail of this queue, waiting if
     * necessary for space to become available.
     *
     * @throws InterruptedException {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        // Note: convention in all put/take/etc is to preset local var
        // holding count negative to indicate failure unless set.
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            /*
             * Note that count is used in wait guard even though it is
             * not protected by lock. This works because count can
             * only decrease at this point (all other puts are shut
             * out by lock), and we (or some other waiting put) are
             * signalled if it ever changes from capacity. Similarly
             * for all other uses of count in other wait guards.
             意思是說count在這裡只會減少,因此用來判斷坐while的條件是沒有問題的
             */
            while (count.get() == capacity) {
                //核心就是在這裡,當佇列滿了之後,會阻塞等待
                notFull.await();
            }
            enqueue(node);
            c = count.getAndIncrement();
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
    }

dequeue()

出隊,就是刪除連結串列首部的節點

這裡有一個值得注意的點是,head節點僅僅做標記,實際的隊首是head.next

並且head標記節點,內部的值為null,因此出隊一個後,實際出隊的那個節點,可以將值置為null,然後將head更新為該節點,相當於head是不斷變化的

    /**
     * Removes a node from head of queue.
     *
     * @return the node
     */
    private E dequeue() {
        // assert takeLock.isHeldByCurrentThread();
        // assert head.item == null;
        Node<E> h = head;
        Node<E> first = h.next;
        h.next = h; // help GC
        //更新為head為first
        head = first;
        E x = first.item;
        //將first的值置為null,此時first節點就是真正的head節點了
        first.item = null;
        return x;
    }

poll()

    public E poll() {
        final AtomicInteger count = this.count;
        if (count.get() == 0)
            return null;
        E x = null;
        int c = -1;
        final ReentrantLock takeLock = this.takeLock;
        //進行加鎖
        takeLock.lock();
        try {
            if (count.get() > 0) {
                //得到出隊的資料
                x = dequeue();
                c = count.getAndDecrement();
                //注意這裡c還是count之前的樹值,因此判斷c > 1,也就是c >= 2,減1之後c >= 1
                //因此可以傳送佇列notEmpty的訊號了
                if (c > 1)
                    notEmpty.signal();
            }
        } finally {
            takeLock.unlock();
        }
        //如果c之前為capacity,出隊一個後,佇列就有了空間
        //所以可以向佇列傳送notFull的訊號了
        if (c == capacity)
            signalNotFull();
        return x;
    }

poll(long timeout, TimeUnit unit)

與poll()沒什麼太大區別,僅僅加了一個等待時間

    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        E x = null;
        int c = -1;
        long nanos = unit.toNanos(timeout);
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                if (nanos <= 0)
                    return null;
                nanos = notEmpty.awaitNanos(nanos);
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1)
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }

take()

與poll()也沒什麼太大區別,就是當佇列沒有節點時,會進行阻塞等待

    public E take() throws InterruptedException {
        E x;
        int c = -1;
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                //阻塞等待
                notEmpty.await();
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1)
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }

remove(Object o)

    /**
     * Removes a single instance of the specified element from this queue,
     * if it is present.  More formally, removes an element {@code e} such
     * that {@code o.equals(e)}, if this queue contains one or more such
     * elements.
     * Returns {@code true} if this queue contained the specified element
     * (or equivalently, if this queue changed as a result of the call).
     *
     * @param o element to be removed from this queue, if present
     * @return {@code true} if this queue changed as a result of the call
     */
    public boolean remove(Object o) {
        if (o == null) return false;
        //對takeLock和putLock進行加鎖
        fullyLock();
        try {
            //以trail當作前繼節點,p是實際用來做判斷的節點
            //便於節點的刪除
            for (Node<E> trail = head, p = trail.next;
                 p != null;
                 trail = p, p = p.next) {
                if (o.equals(p.item)) {
                    //將節點從連結串列中刪除
                    unlink(p, trail);
                    return true;
                }
            }
            return false;
        } finally {
            //對takeLock和putLock進行解鎖
            fullyUnlock();
        }
    }
fullyLock()

刪除節點時,不能進行入隊和出隊操作

    /**
     * Locks to prevent both puts and takes.
     */
    void fullyLock() {
        putLock.lock();
        takeLock.lock();
    }
fullyUnlock()
    /**
     * Unlocks to allow both puts and takes.
     */
    void fullyUnlock() {
        takeLock.unlock();
        putLock.unlock();
    }
unlink(Node p, Node trail)

將節點從連結串列中刪除

    /**
     * Unlinks interior Node p with predecessor trail.
     */
    void unlink(Node<E> p, Node<E> trail) {
        // assert isFullyLocked();
        // p.next is not changed, to allow iterators that are
        // traversing p to maintain their weak-consistency guarantee.
        //先將節點的value置為null
        p.item = null;
        trail.next = p.next;
        //如果p是連結串列最後一個節點,則更新last為trail
        if (last == p)
            last = trail;
        //刪除節點之前佇列的容量滿了,這是刪除了一個節點
        //可以傳送notFull的訊號
        if (count.getAndDecrement() == capacity)
            notFull.signal();
    }