使用Redis實現延時任務(一)
前提
最近在生產環境剛好遇到了延時任務的場景,調研了一下目前主流的方案,分析了一下優劣並且敲定了最終的方案。這篇文章記錄了調研的過程,以及初步方案的實現。
候選方案對比
下面是想到的幾種實現延時任務的方案,總結了一下相應的優勢和劣勢。
方案 | 優勢 | 劣勢 | 選用場景 |
---|---|---|---|
JDK 內建的延遲佇列DelayQueue
|
實現簡單 | 資料記憶體態,不可靠 | 一致性相對低的場景 |
排程框架和MySQL 進行短間隔輪詢 |
實現簡單,可靠性高 | 存在明顯的效能瓶頸 | 資料量較少實時性相對低的場景 |
RabbitMQ 的DLX 和TTL ,一般稱為死信佇列方案 |
非同步互動可以削峰 | 延時的時間長度不可控,如果資料需要持久化則效能會降低 | - |
排程框架和Redis 進行短間隔輪詢 |
資料持久化,高效能 | 實現難度大 | 常見於支付結果回撥方案 |
時間輪 | 實時性高 | 實現難度大,記憶體消耗大 | 實時性高的場景 |
如果應用的資料量不高,實時性要求比較低,選用排程框架和MySQL
進行短間隔輪詢這個方案是最優的方案。但是筆者遇到的場景資料量相對比較大,實時性並不高,採用掃庫的方案一定會對MySQL
例項造成比較大的壓力。記得很早之前,看過一個PPT叫《盒子科技聚合支付系統演進》,其中裡面有一張圖片給予筆者一點啟發:
裡面剛好用到了排程框架和Redis
進行短間隔輪詢實現延時任務的方案,不過為了分攤應用的壓力,圖中的方案還做了分片處理。鑑於筆者當前業務緊迫,所以在第一期的方案暫時不考慮分片,只做了一個簡化版的實現。
由於PPT中沒有任何的程式碼或者框架貼出,有些需要解決的技術點需要自行思考,下面會重現一次整個方案實現的詳細過程。
場景設計
實際的生產場景是筆者負責的某個系統需要對接一個外部的資金方,每一筆資金下單後需要延時30分鐘推送對應的附件。這裡簡化為一個訂單資訊資料延遲處理的場景,就是每一筆下單記錄一條訂單訊息(暫時叫做OrderMessage
),訂單訊息需要延遲5到15秒後進行非同步處理。
否決的候選方案實現思路
下面介紹一下其它四個不選用的候選方案,結合一些虛擬碼和流程分析一下實現過程。
JDK內建延遲佇列
DelayQueue
是一個阻塞佇列的實現,它的佇列元素必須是Delayed
的子類,這裡做個簡單的例子:
public class DelayQueueMain {
private static final Logger LOGGER = LoggerFactory.getLogger(DelayQueueMain.class);
public static void main(String[] args) throws Exception {
DelayQueue<OrderMessage> queue = new DelayQueue<>();
// 預設延遲5秒
OrderMessage message = new OrderMessage("ORDER_ID_10086");
queue.add(message);
// 延遲6秒
message = new OrderMessage("ORDER_ID_10087",6);
queue.add(message);
// 延遲10秒
message = new OrderMessage("ORDER_ID_10088",10);
queue.add(message);
ExecutorService executorService = Executors.newSingleThreadExecutor(r -> {
Thread thread = new Thread(r);
thread.setName("DelayWorker");
thread.setDaemon(true);
return thread;
});
LOGGER.info("開始執行排程執行緒...");
executorService.execute(() -> {
while (true) {
try {
OrderMessage task = queue.take();
LOGGER.info("延遲處理訂單訊息,{}",task.getDescription());
} catch (Exception e) {
LOGGER.error(e.getMessage(),e);
}
}
});
Thread.sleep(Integer.MAX_VALUE);
}
private static class OrderMessage implements Delayed {
private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
/**
* 預設延遲5000毫秒
*/
private static final long DELAY_MS = 1000L * 5;
/**
* 訂單ID
*/
private final String orderId;
/**
* 建立時間戳
*/
private final long timestamp;
/**
* 過期時間
*/
private final long expire;
/**
* 描述
*/
private final String description;
public OrderMessage(String orderId,long expireSeconds) {
this.orderId = orderId;
this.timestamp = System.currentTimeMillis();
this.expire = this.timestamp + expireSeconds * 1000L;
this.description = String.format("訂單[%s]-建立時間為:%s,超時時間為:%s",orderId,LocalDateTime.ofInstant(Instant.ofEpochMilli(timestamp),ZoneId.systemDefault()).format(F),LocalDateTime.ofInstant(Instant.ofEpochMilli(expire),ZoneId.systemDefault()).format(F));
}
public OrderMessage(String orderId) {
this.orderId = orderId;
this.timestamp = System.currentTimeMillis();
this.expire = this.timestamp + DELAY_MS;
this.description = String.format("訂單[%s]-建立時間為:%s,ZoneId.systemDefault()).format(F));
}
public String getOrderId() {
return orderId;
}
public long getTimestamp() {
return timestamp;
}
public long getExpire() {
return expire;
}
public String getDescription() {
return description;
}
@Override
public long getDelay(TimeUnit unit) {
return unit.convert(this.expire - System.currentTimeMillis(),TimeUnit.MILLISECONDS);
}
@Override
public int compareTo(Delayed o) {
return (int) (this.getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));
}
}
}
複製程式碼
注意一下,OrderMessage
實現Delayed
介面,關鍵是需要實現Delayed#getDelay()
和Delayed#compareTo()
。執行一下main()
方法:
10:16:08.240 [main] INFO club.throwable.delay.DelayQueueMain - 開始執行排程執行緒...
10:16:13.224 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單訊息,訂單[ORDER_ID_10086]-建立時間為:2019-08-20 10:16:08,超時時間為:2019-08-20 10:16:13
10:16:14.237 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單訊息,訂單[ORDER_ID_10087]-建立時間為:2019-08-20 10:16:08,超時時間為:2019-08-20 10:16:14
10:16:18.237 [DelayWorker] INFO club.throwable.delay.DelayQueueMain - 延遲處理訂單訊息,訂單[ORDER_ID_10088]-建立時間為:2019-08-20 10:16:08,超時時間為:2019-08-20 10:16:18
複製程式碼
排程框架 + MySQL
使用排程框架對MySQL
表進行短間隔輪詢是實現難度比較低的方案,通常服務剛上線,表資料不多並且實時性不高的情況下應該首選這個方案。不過要注意以下幾點:
- 注意輪詢間隔不能太短,否則會對
MySQL
例項產生影響。 - 注意每次查詢的數量,結果集數量太多有可能會導致排程阻塞和佔用應用大量記憶體,從而影響時效性。
- 注意要設計狀態值和最大重試次數,這樣才能儘量避免大量資料積壓和重複查詢的問題。
- 最好通過時間列做索引,查詢指定時間範圍內的資料。
引入Quartz
、MySQL
的Java驅動包和spring-boot-starter-jdbc
(這裡只是為了方便用相對輕量級的框架實現,生產中可以按場景按需選擇其他更合理的框架):
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.48</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jdbc</artifactId>
<version>2.1.7.RELEASE</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.quartz-scheduler</groupId>
<artifactId>quartz</artifactId>
<version>2.3.1</version>
<scope>test</scope>
</dependency>
複製程式碼
假設表設計如下:
CREATE DATABASE `delayTask` CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_520_ci;
USE `delayTask`;
CREATE TABLE `t_order_message`
(
id BIGINT UNSIGNED PRIMARY KEY AUTO_INCREMENT,order_id VARCHAR(50) NOT NULL COMMENT '訂單ID',create_time DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '建立日期時間',edit_time DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '修改日期時間',retry_times TINYINT NOT NULL DEFAULT 0 COMMENT '重試次數',order_status TINYINT NOT NULL DEFAULT 0 COMMENT '訂單狀態',INDEX idx_order_id (order_id),INDEX idx_create_time (create_time)
) COMMENT '訂單資訊表';
# 寫入兩條測試資料
INSERT INTO t_order_message(order_id) VALUES ('10086'),('10087');
複製程式碼
編寫程式碼:
// 常量
public class OrderConstants {
public static final int MAX_RETRY_TIMES = 5;
public static final int PENDING = 0;
public static final int SUCCESS = 1;
public static final int FAIL = -1;
public static final int LIMIT = 10;
}
// 實體
@Builder
@Data
public class OrderMessage {
private Long id;
private String orderId;
private LocalDateTime createTime;
private LocalDateTime editTime;
private Integer retryTimes;
private Integer orderStatus;
}
// DAO
@RequiredArgsConstructor
public class OrderMessageDao {
private final JdbcTemplate jdbcTemplate;
private static final ResultSetExtractor<List<OrderMessage>> M = r -> {
List<OrderMessage> list = Lists.newArrayList();
while (r.next()) {
list.add(OrderMessage.builder()
.id(r.getLong("id"))
.orderId(r.getString("order_id"))
.createTime(r.getTimestamp("create_time").toLocalDateTime())
.editTime(r.getTimestamp("edit_time").toLocalDateTime())
.retryTimes(r.getInt("retry_times"))
.orderStatus(r.getInt("order_status"))
.build());
}
return list;
};
public List<OrderMessage> selectPendingRecords(LocalDateTime start,LocalDateTime end,List<Integer> statusList,int maxRetryTimes,int limit) {
StringJoiner joiner = new StringJoiner(",");
statusList.forEach(s -> joiner.add(String.valueOf(s)));
return jdbcTemplate.query("SELECT * FROM t_order_message WHERE create_time >= ? AND create_time <= ? " +
"AND order_status IN (?) AND retry_times < ? LIMIT ?",p -> {
p.setTimestamp(1,Timestamp.valueOf(start));
p.setTimestamp(2,Timestamp.valueOf(end));
p.setString(3,joiner.toString());
p.setInt(4,maxRetryTimes);
p.setInt(5,limit);
},M);
}
public int updateOrderStatus(Long id,int status) {
return jdbcTemplate.update("UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?",p -> {
p.setInt(1,status);
p.setTimestamp(2,Timestamp.valueOf(LocalDateTime.now()));
p.setLong(3,id);
});
}
}
// Service
@RequiredArgsConstructor
public class OrderMessageService {
private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageService.class);
private final OrderMessageDao orderMessageDao;
private static final List<Integer> STATUS = Lists.newArrayList();
static {
STATUS.add(OrderConstants.PENDING);
STATUS.add(OrderConstants.FAIL);
}
public void executeDelayJob() {
LOGGER.info("訂單處理定時任務開始執行......");
LocalDateTime end = LocalDateTime.now();
// 一天前
LocalDateTime start = end.minusDays(1);
List<OrderMessage> list = orderMessageDao.selectPendingRecords(start,end,STATUS,OrderConstants.MAX_RETRY_TIMES,OrderConstants.LIMIT);
if (!list.isEmpty()) {
for (OrderMessage m : list) {
LOGGER.info("處理訂單[{}],狀態由{}更新為{}",m.getOrderId(),m.getOrderStatus(),OrderConstants.SUCCESS);
// 這裡其實可以優化為批量更新
orderMessageDao.updateOrderStatus(m.getId(),OrderConstants.SUCCESS);
}
}
LOGGER.info("訂單處理定時任務開始完畢......");
}
}
// Job
@DisallowConcurrentExecution
public class OrderMessageDelayJob implements Job {
@Override
public void execute(JobExecutionContext jobExecutionContext) throws JobExecutionException {
OrderMessageService service = (OrderMessageService) jobExecutionContext.getMergedJobDataMap().get("orderMessageService");
service.executeDelayJob();
}
public static void main(String[] args) throws Exception {
HikariConfig config = new HikariConfig();
config.setJdbcUrl("jdbc:mysql://localhost:3306/delayTask?useSSL=false&characterEncoding=utf8");
config.setDriverClassName(Driver.class.getName());
config.setUsername("root");
config.setPassword("root");
HikariDataSource dataSource = new HikariDataSource(config);
OrderMessageDao orderMessageDao = new OrderMessageDao(new JdbcTemplate(dataSource));
OrderMessageService service = new OrderMessageService(orderMessageDao);
// 記憶體模式的排程器
StdSchedulerFactory factory = new StdSchedulerFactory();
Scheduler scheduler = factory.getScheduler();
// 這裡沒有用到IOC容器,直接用Quartz資料集合傳遞服務引用
JobDataMap jobDataMap = new JobDataMap();
jobDataMap.put("orderMessageService",service);
// 新建Job
JobDetail job = JobBuilder.newJob(OrderMessageDelayJob.class)
.withIdentity("orderMessageDelayJob","delayJob")
.usingJobData(jobDataMap)
.build();
// 新建觸發器,10秒執行一次
Trigger trigger = TriggerBuilder.newTrigger()
.withIdentity("orderMessageDelayTrigger","delayJob")
.withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(10).repeatForever())
.build();
scheduler.scheduleJob(job,trigger);
// 啟動排程器
scheduler.start();
Thread.sleep(Integer.MAX_VALUE);
}
}
複製程式碼
這個例子裡面用了create_time
做輪詢,實際上可以新增一個排程時間schedule_time
列做輪詢,這樣子才能更容易定製空閒時和忙碌時候的排程策略。上面的示例的執行效果如下:
11:58:27.202 [main] INFO org.quartz.core.QuartzScheduler - Scheduler meta-data: Quartz Scheduler (v2.3.1) 'DefaultQuartzScheduler' with instanceId 'NON_CLUSTERED'
Scheduler class: 'org.quartz.core.QuartzScheduler' - running locally.
NOT STARTED.
Currently in standby mode.
Number of jobs executed: 0
Using thread pool 'org.quartz.simpl.SimpleThreadPool' - with 10 threads.
Using job-store 'org.quartz.simpl.RAMJobStore' - which does not support persistence. and is not clustered.
11:58:27.202 [main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler 'DefaultQuartzScheduler' initialized from default resource file in Quartz package: 'quartz.properties'
11:58:27.202 [main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler version: 2.3.1
11:58:27.209 [main] INFO org.quartz.core.QuartzScheduler - Scheduler DefaultQuartzScheduler_$_NON_CLUSTERED started.
11:58:27.212 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 1 triggers
11:58:27.217 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.simpl.PropertySettingJobFactory - Producing instance of Job 'delayJob.orderMessageDelayJob',class=club.throwable.jdbc.OrderMessageDelayJob
11:58:27.219 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@10eb8c53
11:58:27.220 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 0 triggers
11:58:27.221 [DefaultQuartzScheduler_Worker-1] DEBUG org.quartz.core.JobRunShell - Calling execute on job delayJob.orderMessageDelayJob
11:58:34.440 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 訂單處理定時任務開始執行......
11:58:34.451 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@3d27ece4
11:58:34.459 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@64e808af
11:58:34.470 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@79c8c2b7
11:58:34.477 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@19a62369
11:58:34.485 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - Added connection com.mysql.jdbc.JDBC4Connection@1673d017
11:58:34.485 [HikariPool-1 connection adder] DEBUG com.zaxxer.hikari.pool.HikariPool - HikariPool-1 - After adding stats (total=10,active=0,idle=10,waiting=0)
11:58:34.559 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL query
11:58:34.565 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [SELECT * FROM t_order_message WHERE create_time >= ? AND create_time <= ? AND order_status IN (?) AND retry_times < ? LIMIT ?]
11:58:34.645 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource
11:58:35.210 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - SQLWarning ignored: SQL state '22007',error code '1292',message [Truncated incorrect DOUBLE value: '0,-1']
11:58:35.335 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 處理訂單[10086],狀態由0更新為1
11:58:35.342 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL update
11:58:35.346 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?]
11:58:35.347 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource
11:58:35.354 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 處理訂單[10087],狀態由0更新為1
11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL update
11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.core.JdbcTemplate - Executing prepared SQL statement [UPDATE t_order_message SET order_status = ?,edit_time = ? WHERE id =?]
11:58:35.355 [DefaultQuartzScheduler_Worker-1] DEBUG org.springframework.jdbc.datasource.DataSourceUtils - Fetching JDBC Connection from DataSource
11:58:35.361 [DefaultQuartzScheduler_Worker-1] INFO club.throwable.jdbc.OrderMessageService - 訂單處理定時任務開始完畢......
11:58:35.363 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 1 triggers
11:58:37.206 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.simpl.PropertySettingJobFactory - Producing instance of Job 'delayJob.orderMessageDelayJob',class=club.throwable.jdbc.OrderMessageDelayJob
11:58:37.206 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of 0 triggers
複製程式碼
RabbitMQ死信佇列
使用RabbitMQ
死信佇列依賴於RabbitMQ
的兩個特性:TTL
和DLX
。
-
TTL
:Time To Live
,訊息存活時間,包括兩個維度:佇列訊息存活時間和訊息本身的存活時間。 -
DLX
:Dead Letter Exchange
,死信交換器。
畫個圖描述一下這兩個特性:
下面為了簡單起見,TTL
使用了針對佇列的維度。引入RabbitMQ
的Java驅動:
<dependency>
<groupId>com.rabbitmq</groupId>
<artifactId>amqp-client</artifactId>
<version>5.7.3</version>
<scope>test</scope>
</dependency>
複製程式碼
程式碼如下:
public class DlxMain {
private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
private static final Logger LOGGER = LoggerFactory.getLogger(DlxMain.class);
public static void main(String[] args) throws Exception {
ConnectionFactory factory = new ConnectionFactory();
Connection connection = factory.newConnection();
Channel producerChannel = connection.createChannel();
Channel consumerChannel = connection.createChannel();
// dlx交換器名稱為dlx.exchange,型別是direct,繫結鍵為dlx.key,佇列名為dlx.queue
producerChannel.exchangeDeclare("dlx.exchange","direct");
producerChannel.queueDeclare("dlx.queue",false,null);
producerChannel.queueBind("dlx.queue","dlx.exchange","dlx.key");
Map<String,Object> queueArgs = new HashMap<>();
// 設定佇列訊息過期時間,5秒
queueArgs.put("x-message-ttl",5000);
// 指定DLX相關引數
queueArgs.put("x-dead-letter-exchange","dlx.exchange");
queueArgs.put("x-dead-letter-routing-key","dlx.key");
// 宣告業務佇列
producerChannel.queueDeclare("business.queue",queueArgs);
ExecutorService executorService = Executors.newSingleThreadExecutor(r -> {
Thread thread = new Thread(r);
thread.setDaemon(true);
thread.setName("DlxConsumer");
return thread;
});
// 啟動消費者
executorService.execute(() -> {
try {
consumerChannel.basicConsume("dlx.queue",true,new DlxConsumer(consumerChannel));
} catch (IOException e) {
LOGGER.error(e.getMessage(),e);
}
});
OrderMessage message = new OrderMessage("10086");
producerChannel.basicPublish("","business.queue",MessageProperties.TEXT_PLAIN,message.getDescription().getBytes(StandardCharsets.UTF_8));
LOGGER.info("傳送訊息成功,訂單ID:{}",message.getOrderId());
message = new OrderMessage("10087");
producerChannel.basicPublish("",message.getOrderId());
message = new OrderMessage("10088");
producerChannel.basicPublish("",message.getOrderId());
Thread.sleep(Integer.MAX_VALUE);
}
private static class DlxConsumer extends DefaultConsumer {
DlxConsumer(Channel channel) {
super(channel);
}
@Override
public void handleDelivery(String consumerTag,Envelope envelope,AMQP.BasicProperties properties,byte[] body) throws IOException {
LOGGER.info("處理訊息成功:{}",new String(body,StandardCharsets.UTF_8));
}
}
private static class OrderMessage {
private final String orderId;
private final long timestamp;
private final String description;
OrderMessage(String orderId) {
this.orderId = orderId;
this.timestamp = System.currentTimeMillis();
this.description = String.format("訂單[%s],訂單建立時間為:%s",ZoneId.systemDefault()).format(F));
}
public String getOrderId() {
return orderId;
}
public long getTimestamp() {
return timestamp;
}
public String getDescription() {
return description;
}
}
}
複製程式碼
執行main()
方法結果如下:
16:35:58.638 [main] INFO club.throwable.dlx.DlxMain - 傳送訊息成功,訂單ID:10086
16:35:58.641 [main] INFO club.throwable.dlx.DlxMain - 傳送訊息成功,訂單ID:10087
16:35:58.641 [main] INFO club.throwable.dlx.DlxMain - 傳送訊息成功,訂單ID:10088
16:36:03.646 [pool-1-thread-4] INFO club.throwable.dlx.DlxMain - 處理訊息成功:訂單[10086],訂單建立時間為:2019-08-20 16:35:58
16:36:03.670 [pool-1-thread-5] INFO club.throwable.dlx.DlxMain - 處理訊息成功:訂單[10087],訂單建立時間為:2019-08-20 16:35:58
16:36:03.670 [pool-1-thread-6] INFO club.throwable.dlx.DlxMain - 處理訊息成功:訂單[10088],訂單建立時間為:2019-08-20 16:35:58
複製程式碼
時間輪
時間輪TimingWheel
是一種高效、低延遲的排程資料結構,底層採用陣列實現儲存任務列表的環形佇列,示意圖如下:
這裡暫時不對時間輪和其實現作分析,只簡單舉例說明怎麼使用時間輪實現延時任務。這裡使用Netty
提供的HashedWheelTimer
,引入依賴:
<dependency>
<groupId>io.netty</groupId>
<artifactId>netty-common</artifactId>
<version>4.1.39.Final</version>
</dependency>
複製程式碼
程式碼如下:
public class HashedWheelTimerMain {
private static final DateTimeFormatter F = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");
public static void main(String[] args) throws Exception {
AtomicInteger counter = new AtomicInteger();
ThreadFactory factory = r -> {
Thread thread = new Thread(r);
thread.setDaemon(true);
thread.setName("HashedWheelTimerWorker-" + counter.getAndIncrement());
return thread;
};
// tickDuration - 每tick一次的時間間隔,每tick一次就會到達下一個槽位
// unit - tickDuration的時間單位
// ticksPerWhee - 時間輪中的槽位數
Timer timer = new HashedWheelTimer(factory,1,TimeUnit.SECONDS,60);
TimerTask timerTask = new DefaultTimerTask("10086");
timer.newTimeout(timerTask,5,TimeUnit.SECONDS);
timerTask = new DefaultTimerTask("10087");
timer.newTimeout(timerTask,10,TimeUnit.SECONDS);
timerTask = new DefaultTimerTask("10088");
timer.newTimeout(timerTask,15,TimeUnit.SECONDS);
Thread.sleep(Integer.MAX_VALUE);
}
private static class DefaultTimerTask implements TimerTask {
private final String orderId;
private final long timestamp;
public DefaultTimerTask(String orderId) {
this.orderId = orderId;
this.timestamp = System.currentTimeMillis();
}
@Override
public void run(Timeout timeout) throws Exception {
System.out.println(String.format("任務執行時間:%s,訂單建立時間:%s,訂單ID:%s",LocalDateTime.now().format(F),orderId));
}
}
}
複製程式碼
執行結果:
任務執行時間:2019-08-20 17:19:49.310,訂單建立時間:2019-08-20 17:19:43.294,訂單ID:10086
任務執行時間:2019-08-20 17:19:54.297,訂單建立時間:2019-08-20 17:19:43.301,訂單ID:10087
任務執行時間:2019-08-20 17:19:59.297,訂單ID:10088
複製程式碼
一般來說,任務執行的時候應該使用另外的業務執行緒池,以免阻塞時間輪本身的運動。
選用的方案實現過程
最終選用了基於Redis
的有序集合Sorted Set
和Quartz
短輪詢進行實現。具體方案是:
- 訂單建立的時候,訂單ID和當前時間戳分別作為
Sorted Set
的member和score新增到訂單佇列Sorted Set
中。 - 訂單建立的時候,訂單ID和推送內容
JSON
字串分別作為field和value新增到訂單佇列內容Hash
中。 - 第1步和第2步操作的時候用
Lua
指令碼保證原子性。 - 使用一個非同步執行緒通過
Sorted Set
的命令ZREVRANGEBYSCORE
彈出指定數量的訂單ID對應的訂單佇列內容Hash
中的訂單推送內容資料進行處理。
對於第4點處理有兩種方案:
- 方案一:彈出訂單內容資料的同時進行資料刪除,也就是
ZREVRANGEBYSCORE
、ZREM
和HDEL
命令要在同一個Lua
指令碼中執行,這樣的話Lua
指令碼的編寫難度大,並且由於彈出資料已經在Redis
中刪除,如果資料處理失敗則可能需要從資料庫重新查詢補償。 - 方案二:彈出訂單內容資料之後,在資料處理完成的時候再主動刪除訂單佇列
Sorted Set
和訂單佇列內容Hash
中對應的資料,這樣的話需要控制併發,有重複執行的可能性。
最終暫時選用了方案一,也就是從Sorted Set
彈出訂單ID並且從Hash
中獲取完推送資料之後馬上刪除這兩個集合中對應的資料。方案的流程圖大概是這樣:
這裡先詳細說明一下用到的Redis
命令。
Sorted Set相關命令
-
ZADD
命令 - 將一個或多個成員元素及其分數值加入到有序集當中。
ZADD KEY SCORE1 VALUE1.. SCOREN VALUEN
-
ZREVRANGEBYSCORE
命令 - 返回有序集中指定分數區間內的所有的成員。有序整合員按分數值遞減(從大到小)的次序排列。
ZREVRANGEBYSCORE key max min [WITHSCORES] [LIMIT offset count]
- max:分數區間 - 最大分數。
- min:分數區間 - 最小分數。
- WITHSCORES:可選引數,是否返回分數值,指定則會返回得分值。
- LIMIT:可選引數,offset和count原理和
MySQL
的LIMIT offset,size
一致,如果不指定此引數則返回整個集合的資料。
-
ZREM
命令 - 用於移除有序集中的一個或多個成員,不存在的成員將被忽略。
ZREM key member [member ...]
Hash相關命令
-
HMSET
命令 - 同時將多個field-value(欄位-值)對設定到雜湊表中。
HMSET KEY_NAME FIELD1 VALUE1 ...FIELDN VALUEN
-
HDEL
命令 - 刪除雜湊表key中的一個或多個指定欄位,不存在的欄位將被忽略。
HDEL KEY_NAME FIELD1.. FIELDN
Lua相關
- 載入
Lua
指令碼並且返回指令碼的SHA-1
字串:SCRIPT LOAD script
。 - 執行已經載入的
Lua
指令碼:EVALSHA sha1 numkeys key [key ...] arg [arg ...]
。 -
unpack
函式可以把table
型別的引數轉化為可變引數,不過需要注意的是unpack
函式必須使用在非變數定義的函式呼叫的最後一個引數,否則會失效,詳細見Stackoverflow
的提問table.unpack() only returns the first element。
PS:如果不熟悉Lua語言,建議系統學習一下,因為想用好Redis,一定離不開Lua。
引入依賴:
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>2.1.7.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.quartz-scheduler</groupId>
<artifactId>quartz</artifactId>
<version>2.3.1</version>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.1.0</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context-support</artifactId>
<version>5.1.9.RELEASE</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.8</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.59</version>
</dependency>
</dependencies>
複製程式碼
編寫Lua
指令碼/lua/enqueue.lua
和/lua/dequeue.lua
:
-- /lua/enqueue.lua
local zset_key = KEYS[1]
local hash_key = KEYS[2]
local zset_value = ARGV[1]
local zset_score = ARGV[2]
local hash_field = ARGV[3]
local hash_value = ARGV[4]
redis.call('ZADD',zset_key,zset_score,zset_value)
redis.call('HSET',hash_key,hash_field,hash_value)
return nil
-- /lua/dequeue.lua
-- 參考jesque的部分Lua指令碼實現
local zset_key = KEYS[1]
local hash_key = KEYS[2]
local min_score = ARGV[1]
local max_score = ARGV[2]
local offset = ARGV[3]
local limit = ARGV[4]
-- TYPE命令的返回結果是{'ok':'zset'}這樣子,這裡利用next做一輪迭代
local status,type = next(redis.call('TYPE',zset_key))
if status ~= nil and status == 'ok' then
if type == 'zset' then
local list = redis.call('ZREVRANGEBYSCORE',max_score,min_score,'LIMIT',offset,limit)
if list ~= nil and #list > 0 then
-- unpack函式能把table轉化為可變引數
redis.call('ZREM',unpack(list))
local result = redis.call('HMGET',unpack(list))
redis.call('HDEL',unpack(list))
return result
end
end
end
return nil
複製程式碼
編寫核心API程式碼:
// Jedis提供者
@Component
public class JedisProvider implements InitializingBean {
private JedisPool jedisPool;
@Override
public void afterPropertiesSet() throws Exception {
jedisPool = new JedisPool();
}
public Jedis provide(){
return jedisPool.getResource();
}
}
// OrderMessage
@Data
public class OrderMessage {
private String orderId;
private BigDecimal amount;
private Long userId;
}
// 延遲佇列介面
public interface OrderDelayQueue {
void enqueue(OrderMessage message);
List<OrderMessage> dequeue(String min,String max,String offset,String limit);
List<OrderMessage> dequeue();
String enqueueSha();
String dequeueSha();
}
// 延遲佇列實現類
@RequiredArgsConstructor
@Component
public class RedisOrderDelayQueue implements OrderDelayQueue,InitializingBean {
private static final String MIN_SCORE = "0";
private static final String OFFSET = "0";
private static final String LIMIT = "10";
private static final String ORDER_QUEUE = "ORDER_QUEUE";
private static final String ORDER_DETAIL_QUEUE = "ORDER_DETAIL_QUEUE";
private static final String ENQUEUE_LUA_SCRIPT_LOCATION = "/lua/enqueue.lua";
private static final String DEQUEUE_LUA_SCRIPT_LOCATION = "/lua/dequeue.lua";
private static final AtomicReference<String> ENQUEUE_LUA_SHA = new AtomicReference<>();
private static final AtomicReference<String> DEQUEUE_LUA_SHA = new AtomicReference<>();
private static final List<String> KEYS = Lists.newArrayList();
private final JedisProvider jedisProvider;
static {
KEYS.add(ORDER_QUEUE);
KEYS.add(ORDER_DETAIL_QUEUE);
}
@Override
public void enqueue(OrderMessage message) {
List<String> args = Lists.newArrayList();
args.add(message.getOrderId());
args.add(String.valueOf(System.currentTimeMillis()));
args.add(message.getOrderId());
args.add(JSON.toJSONString(message));
try (Jedis jedis = jedisProvider.provide()) {
jedis.evalsha(ENQUEUE_LUA_SHA.get(),KEYS,args);
}
}
@Override
public List<OrderMessage> dequeue() {
// 30分鐘之前
String maxScore = String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000);
return dequeue(MIN_SCORE,maxScore,OFFSET,LIMIT);
}
@SuppressWarnings("unchecked")
@Override
public List<OrderMessage> dequeue(String min,String limit) {
List<String> args = new ArrayList<>();
args.add(min);
args.add(max);
args.add(offset);
args.add(limit);
List<OrderMessage> result = Lists.newArrayList();
try (Jedis jedis = jedisProvider.provide()) {
List<String> eval = (List<String>) jedis.evalsha(DEQUEUE_LUA_SHA.get(),args);
if (null != eval) {
for (String e : eval) {
result.add(JSON.parseObject(e,OrderMessage.class));
}
}
}
return result;
}
@Override
public String enqueueSha() {
return ENQUEUE_LUA_SHA.get();
}
@Override
public String dequeueSha() {
return DEQUEUE_LUA_SHA.get();
}
@Override
public void afterPropertiesSet() throws Exception {
// 載入Lua指令碼
loadLuaScript();
}
private void loadLuaScript() throws Exception {
try (Jedis jedis = jedisProvider.provide()) {
ClassPathResource resource = new ClassPathResource(ENQUEUE_LUA_SCRIPT_LOCATION);
String luaContent = StreamUtils.copyToString(resource.getInputStream(),StandardCharsets.UTF_8);
String sha = jedis.scriptLoad(luaContent);
ENQUEUE_LUA_SHA.compareAndSet(null,sha);
resource = new ClassPathResource(DEQUEUE_LUA_SCRIPT_LOCATION);
luaContent = StreamUtils.copyToString(resource.getInputStream(),StandardCharsets.UTF_8);
sha = jedis.scriptLoad(luaContent);
DEQUEUE_LUA_SHA.compareAndSet(null,sha);
}
}
public static void main(String[] as) throws Exception {
DateTimeFormatter f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");
JedisProvider jedisProvider = new JedisProvider();
jedisProvider.afterPropertiesSet();
RedisOrderDelayQueue queue = new RedisOrderDelayQueue(jedisProvider);
queue.afterPropertiesSet();
// 寫入測試資料
OrderMessage message = new OrderMessage();
message.setAmount(BigDecimal.valueOf(10086));
message.setOrderId("ORDER_ID_10086");
message.setUserId(10086L);
message.setTimestamp(LocalDateTime.now().format(f));
List<String> args = Lists.newArrayList();
args.add(message.getOrderId());
// 測試需要,score設定為30分鐘之前
args.add(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000));
args.add(message.getOrderId());
args.add(JSON.toJSONString(message));
try (Jedis jedis = jedisProvider.provide()) {
jedis.evalsha(ENQUEUE_LUA_SHA.get(),args);
}
List<OrderMessage> dequeue = queue.dequeue();
System.out.println(dequeue);
}
}
複製程式碼
這裡先執行一次main()
方法驗證一下延遲佇列是否生效:
[OrderMessage(orderId=ORDER_ID_10086,amount=10086,userId=10086,timestamp=2019-08-21 08:32:22.885)]
複製程式碼
確定延遲佇列的程式碼沒有問題,接著編寫一個Quartz
的Job
型別的消費者OrderMessageConsumer
:
@DisallowConcurrentExecution
@Component
public class OrderMessageConsumer implements Job {
private static final AtomicInteger COUNTER = new AtomicInteger();
private static final ExecutorService BUSINESS_WORKER_POOL = Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors(),r -> {
Thread thread = new Thread(r);
thread.setDaemon(true);
thread.setName("OrderMessageConsumerWorker-" + COUNTER.getAndIncrement());
return thread;
});
private static final Logger LOGGER = LoggerFactory.getLogger(OrderMessageConsumer.class);
@Autowired
private OrderDelayQueue orderDelayQueue;
@Override
public void execute(JobExecutionContext jobExecutionContext) throws JobExecutionException {
StopWatch stopWatch = new StopWatch();
stopWatch.start();
LOGGER.info("訂單訊息處理定時任務開始執行......");
List<OrderMessage> messages = orderDelayQueue.dequeue();
if (!messages.isEmpty()) {
// 簡單的列表等分放到執行緒池中執行
List<List<OrderMessage>> partition = Lists.partition(messages,2);
int size = partition.size();
final CountDownLatch latch = new CountDownLatch(size);
for (List<OrderMessage> p : partition) {
BUSINESS_WORKER_POOL.execute(new ConsumeTask(p,latch));
}
try {
latch.await();
} catch (InterruptedException ignore) {
//ignore
}
}
stopWatch.stop();
LOGGER.info("訂單訊息處理定時任務執行完畢,耗時:{} ms......",stopWatch.getTotalTimeMillis());
}
@RequiredArgsConstructor
private static class ConsumeTask implements Runnable {
private final List<OrderMessage> messages;
private final CountDownLatch latch;
@Override
public void run() {
try {
// 實際上這裡應該單條捕獲異常
for (OrderMessage message : messages) {
LOGGER.info("處理訂單資訊,內容:{}",message);
}
} finally {
latch.countDown();
}
}
}
}
複製程式碼
上面的消費者設計的時候需要有以下考量:
- 使用
@DisallowConcurrentExecution
註解不允許Job
併發執行,其實多個Job
併發執行意義不大,因為我們採用的是短間隔的輪詢,而Redis
是單執行緒處理命令,在客戶端做多執行緒其實效果不佳。 - 執行緒池
BUSINESS_WORKER_POOL
的執行緒容量或者佇列應該綜合LIMIT
值、等分訂單資訊列表中使用的size
值以及ConsumeTask
裡面具體的執行時間進行考慮,這裡只是為了方便使用了固定容量的執行緒池。 -
ConsumeTask
中應該對每一條訂單資訊的處理單獨捕獲異常和吞併異常,或者把處理單個訂單資訊的邏輯封裝成一個不丟擲異常的方法。
其他Quartz
相關的程式碼:
// Quartz配置類
@Configuration
public class QuartzAutoConfiguration {
@Bean
public SchedulerFactoryBean schedulerFactoryBean(QuartzAutowiredJobFactory quartzAutowiredJobFactory) {
SchedulerFactoryBean factory = new SchedulerFactoryBean();
factory.setAutoStartup(true);
factory.setJobFactory(quartzAutowiredJobFactory);
return factory;
}
@Bean
public QuartzAutowiredJobFactory quartzAutowiredJobFactory() {
return new QuartzAutowiredJobFactory();
}
public static class QuartzAutowiredJobFactory extends AdaptableJobFactory implements BeanFactoryAware {
private AutowireCapableBeanFactory autowireCapableBeanFactory;
@Override
public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
this.autowireCapableBeanFactory = (AutowireCapableBeanFactory) beanFactory;
}
@Override
protected Object createJobInstance(TriggerFiredBundle bundle) throws Exception {
Object jobInstance = super.createJobInstance(bundle);
// 這裡利用AutowireCapableBeanFactory從新建的Job例項做一次自動裝配,得到一個原型(prototype)的JobBean例項
autowireCapableBeanFactory.autowireBean(jobInstance);
return jobInstance;
}
}
}
複製程式碼
這裡暫時使用了記憶體態的RAMJobStore
去存放任務和觸發器的相關資訊,如果在生產環境最好替換成基於MySQL
也就是JobStoreTX
進行叢集化,最後是啟動函式和CommandLineRunner
的實現:
@SpringBootApplication(exclude = {DataSourceAutoConfiguration.class,TransactionAutoConfiguration.class})
public class Application implements CommandLineRunner {
@Autowired
private Scheduler scheduler;
@Autowired
private JedisProvider jedisProvider;
public static void main(String[] args) {
SpringApplication.run(Application.class,args);
}
@Override
public void run(String... args) throws Exception {
// 準備一些測試資料
prepareOrderMessageData();
JobDetail job = JobBuilder.newJob(OrderMessageConsumer.class)
.withIdentity("OrderMessageConsumer","DelayTask")
.build();
// 觸發器5秒觸發一次
Trigger trigger = TriggerBuilder.newTrigger()
.withIdentity("OrderMessageConsumerTrigger","DelayTask")
.withSchedule(SimpleScheduleBuilder.simpleSchedule().withIntervalInSeconds(5).repeatForever())
.build();
scheduler.scheduleJob(job,trigger);
}
private void prepareOrderMessageData() throws Exception {
DateTimeFormatter f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS");
try (Jedis jedis = jedisProvider.provide()) {
List<OrderMessage> messages = Lists.newArrayList();
for (int i = 0; i < 100; i++) {
OrderMessage message = new OrderMessage();
message.setAmount(BigDecimal.valueOf(i));
message.setOrderId("ORDER_ID_" + i);
message.setUserId((long) i);
message.setTimestamp(LocalDateTime.now().format(f));
messages.add(message);
}
// 這裡暫時不使用Lua
Map<String,Double> map = Maps.newHashMap();
Map<String,String> hash = Maps.newHashMap();
for (OrderMessage message : messages) {
// 故意把score設計成30分鐘前
map.put(message.getOrderId(),Double.valueOf(String.valueOf(System.currentTimeMillis() - 30 * 60 * 1000)));
hash.put(message.getOrderId(),JSON.toJSONString(message));
}
jedis.zadd("ORDER_QUEUE",map);
jedis.hmset("ORDER_DETAIL_QUEUE",hash);
}
}
}
複製程式碼
輸出結果如下:
2019-08-21 22:45:59.518 INFO 33000 --- [ryBean_Worker-1] club.throwable.OrderMessageConsumer : 訂單訊息處理定時任務開始執行......
2019-08-21 22:45:59.525 INFO 33000 --- [onsumerWorker-4] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_91,amount=91,userId=91,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525 INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_95,amount=95,userId=95,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525 INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_97,amount=97,userId=97,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525 INFO 33000 --- [onsumerWorker-0] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_99,amount=99,userId=99,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.525 INFO 33000 --- [onsumerWorker-3] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_93,amount=93,userId=93,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539 INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_94,amount=94,userId=94,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539 INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_96,amount=96,userId=96,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539 INFO 33000 --- [onsumerWorker-3] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_92,amount=92,userId=92,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539 INFO 33000 --- [onsumerWorker-0] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_98,amount=98,userId=98,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.539 INFO 33000 --- [onsumerWorker-4] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_90,amount=90,userId=90,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:45:59.540 INFO 33000 --- [ryBean_Worker-1] club.throwable.OrderMessageConsumer : 訂單訊息處理定時任務執行完畢,耗時:22 ms......
2019-08-21 22:46:04.515 INFO 33000 --- [ryBean_Worker-2] club.throwable.OrderMessageConsumer : 訂單訊息處理定時任務開始執行......
2019-08-21 22:46:04.516 INFO 33000 --- [onsumerWorker-5] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_89,amount=89,userId=89,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516 INFO 33000 --- [onsumerWorker-6] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_87,amount=87,userId=87,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516 INFO 33000 --- [onsumerWorker-7] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_85,amount=85,userId=85,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516 INFO 33000 --- [onsumerWorker-5] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_88,amount=88,userId=88,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516 INFO 33000 --- [onsumerWorker-2] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_83,amount=83,userId=83,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516 INFO 33000 --- [onsumerWorker-1] club.throwable.OrderMessageConsumer : 處理訂單資訊,內容:OrderMessage(orderId=ORDER_ID_81,amount=81,userId=81,內容:OrderMessage(orderId=ORDER_ID_86,amount=86,userId=86,內容:OrderMessage(orderId=ORDER_ID_82,amount=82,userId=82,內容:OrderMessage(orderId=ORDER_ID_84,amount=84,userId=84,內容:OrderMessage(orderId=ORDER_ID_80,amount=80,userId=80,timestamp=2019-08-21 22:45:59.475)
2019-08-21 22:46:04.516 INFO 33000 --- [ryBean_Worker-2] club.throwable.OrderMessageConsumer : 訂單訊息處理定時任務執行完畢,耗時:1 ms......
......
複製程式碼
首次執行的時候涉及到一些元件的初始化,會比較慢,後面看到由於我們只是簡單列印訂單資訊,所以定時任務執行比較快。如果在不調整當前架構的情況下,生產中需要注意:
- 切換
JobStore
為JDBC
模式,Quartz
官方有完整教程,或者看筆者之前翻譯的Quartz
檔案。 - 需要監控或者收集任務的執行狀態,新增預警等等。
這裡其實有一個效能隱患,命令ZREVRANGEBYSCORE
的時間複雜度可以視為為O(N)
,N
是集合的元素個數,由於這裡把所有的訂單資訊都放進了同一個Sorted Set
(ORDER_QUEUE
)中,所以在一直有新增資料的時候,dequeue
指令碼的時間複雜度一直比較高,後續訂單量升高之後會此處一定會成為效能瓶頸,後面會給出解決的方案。
小結
這篇文章主要從一個實際生產案例的模擬例子入手,分析了當前延時任務的一些實現方案,還基於Redis
和Quartz
給出了一個完整的示例。當前的示例只是處於可執行的狀態,有些問題尚未解決。下一篇文章會著眼於解決兩個方面的問題:
- 分片。
- 監控。
還有一點,架構是基於業務形態演進出來的,很多東西需要結合場景進行方案設計和改進,思路僅供參考,切勿照搬程式碼。
附件
- Markdown和PPT原件:github.com/zjcscut/blo…
- Github Page:www.throwable.club/2019/08/21/…
- Coding Page:throwable.coding.me/2019/08/21/…
(本文完 c-5-d e-a-20190821 順便開通了RSS外掛,見主頁的圖示,歡迎訂閱 r-a-20190904)