1. 程式人生 > 其它 >AtCoder Beginner Contest 220

AtCoder Beginner Contest 220

AtCoder Beginner Contest 220
目錄

D - FG operation

題目

\(n\)個數,每次可以進行兩種操作:

  1. 取出前兩個數,相加後對\(10\)取模並將結果放入數列最左端
  2. 取出前兩個數,相乘後對\(10\)取模並將結果放入數列最左端

問,有多少種方案,使得最終結果等於\(k\),\(k\)取0到9的整數.

思路

明顯的DP,設\(f_{i,j}\)

表示消除前\(i\)個數後最前端的數為\(j\)的方案數.

\(f_{i+1,j\cdot a_i \%10}=f_{i+1,j\cdot a_i \%10}+f_{i,j}\)

\(f_{i+1,(j+a_i)\%10}=f_{i+1,(j+a_i)\%10}+f_{i,j}\)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#define int long long
using namespace std;
int read() {
	int re = 0;
	char c = getchar();
	bool negt = false;
	while(c < '0' || c > '9')
		negt |= (c == '-') , c = getchar();
	while(c >= '0' && c <= '9')
		re = (re << 1) + (re << 3) + c - '0' , c = getchar();
	return negt ? -re : re;
}

const int mod = 998244353;
const int N = 100010;
int n , a[N];
int f[N][12];
signed main() {
	n = read();
	for(int i = 1 ; i <= n ; i++)
		a[i] = read();
	
	++f[2][(a[1] + a[2]) % 10];
	++f[2][(a[1] * a[2]) % 10];
	for(int i = 2 ; i < n ; i++)
		for(int j = 0 ; j < 10 ; j++) {
			f[i + 1][(j + a[i + 1]) % 10] += f[i][j] , f[i + 1][(j + a[i + 1]) % 10] %= mod;
			f[i + 1][(j * a[i + 1]) % 10] += f[i][j] , f[i + 1][(j * a[i + 1]) % 10] %= mod;
			
		}
	for(int i = 0 ; i < 10 ; i++)
		cout << f[n][i] << endl;
	return 0;
}

E - Distance on Large Perfect Binary Tree

題目

思路

應該是前六題中最難的一道題.

看下資料範圍,大概是\(O(n)\)的.

所以,我們可以一層一層算,設第\(i\)層的一個點對答案的貢獻為\(f(i)\)則答案就是\(\sum^n_{i=1}f(i)\cdot 2^{i-1}\).

問題就是計算\(f(i)\).

分三種情況:直接向下,直接向上,先向上後向下.

對於第一種情況,如果\(i\)到二叉樹底的距離足夠大,產生的貢獻就是\(2^{d}\),否則沒有貢獻(可以到達以綠框二叉樹的任意一個葉子).

對於第二種情況,如果\(i\)的深度足夠大,產生的貢獻就是\(1\)

,否則沒有貢獻.

//預處理2的次方.
	p[0] = 1;
	for(int i = 1 ; i <= n ; i++)
		p[i] = (p[i - 1] << 1) % mod;
//在for迴圈中.
		if(n - i >= d)
			tmp += p[d];
		if(i > d)
			++tmp;

對於第三種情況:

如果到樹底的距離足夠大,我們可以向上一步然後向下,貢獻就是\(2^{h-1}=2^{d-2}\).

如果深度足夠大,貢獻就是\(2^{h-1}=1\).

除外,我們還可以向上走\(2\)步,\(3\)\(\cdots\)再向下走.

貢獻就是\(\sum^{d-2}_{i=0}2^i\).

那如果距離不夠大呢?

對於右圖,容易得到,\(d - i < 0\)時,深度足夠,否則,綠框二叉樹的深度最小值為\(d - i+1\),貢獻是\(2^{d-i}\).

對於左圖,我們設向上走到\(j\)深度再向下走可以滿足條件,則有\((i-j)+(n-j)\ge d\),即\(j\le \frac{i+n-d}2\),\(j\)的最大值就是\(\lfloor \frac{i+n-d}2\rfloor\),綠框二叉樹的深度也就是\(d-(i-j)\).

所以我們定義一個\(l,r\).

		int l = (d - i < 0 ? 0 : d - i);
		int r = (n - i >= d - 2 ? d - 2 : d - (i - (i + n - d) / 2)) - 1;

答案就是\(\sum^{r}_{i=1}2^i\).根據等比數列,答案就是

\[2^{r+1}-2^l \]

程式碼

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#define int long long
using namespace std;
int read() {
	int re = 0;
	char c = getchar();
	bool negt = false;
	while(c < '0' || c > '9')
		negt |= (c == '-') , c = getchar();
	while(c >= '0' && c <= '9')
		re = (re << 1) + (re << 3) + c - '0' , c = getchar();
	return negt ? -re : re;
}

const int mod = 998244353;
int p[1000010];
int n , d;
signed main() {
	n = read() , d = read();
	
	p[0] = 1;
	for(int i = 1 ; i <= n ; i++)
		p[i] = (p[i - 1] << 1) % mod;
	
	int ans = 0;
	for(int i = 1 ; i <= n ; i++) {
		int tmp = 0;
		if(n - i >= d)
			tmp += p[d];
		if(i > d)
			++tmp;
		int l = (d - i < 0 ? 0 : d - i);
		int r = (n - i >= d - 2 ? d - 2 : d - 1 - (i - (i + n - d) / 2));
		if(l <= r) {
			tmp += (p[r + 1] - p[l] + mod) % mod;
		}
		tmp %= mod;
		ans = (ans + tmp * p[i - 1]) % mod;
		
//		printf("%lld:\t%lld\n" , i , tmp);
	}
	cout << ans % mod;
	return 0;
}

F - Distance Sums 2

題目

思路

簡單的樹形DP,設\(f_i\)表示其他點到\(i\)點的距離之和.

則有:

\[f_i=f_j-size(i)+(n-size(i)) \]

其中,\(j\)\(i\)的父節點,\(size(i)\)表示以\(i\)為根的子樹大小,方程很直觀.

特別地,根節點的\(f\)是所有節點的深度之和(深度從0開始).

程式碼

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#define int long long
using namespace std;
int read() {
	int re = 0;
	char c = getchar();
	bool negt = false;
	while(c < '0' || c > '9')
		negt |= (c == '-') , c = getchar();
	while(c >= '0' && c <= '9')
		re = (re << 1) + (re << 3) + c - '0' , c = getchar();
	return negt ? -re : re;
}

const int N = 200010;

struct EDGE {
	int to , nxt;
}ed[N * 2];
int head[N];
void addedge(int u , int v) {
	static int cnt;
	++cnt;
	ed[cnt].to = v , ed[cnt].nxt = head[u] , head[u] = cnt;
}


int n;
int dep[N];
int siz[N];

int f[N];

void dfs(int x , int fa) {
	siz[x] = 1;
	dep[x] = dep[fa] + 1;
	for(int i = head[x] ; i ; i = ed[i].nxt) {
		if(ed[i].to != fa)
			dfs(ed[i].to , x) , siz[x] += siz[ed[i].to];
	}
}


void dfs2(int x , int fa) {
	if(x != 1)
		f[x] = f[fa] + n - siz[x] - siz[x];
	for(int i = head[x] ; i ; i = ed[i].nxt) {
		if(ed[i].to != fa)
			dfs2(ed[i].to , x);
	}
}
signed main() {
	n = read();
	for(int i = 1 ; i < n ; i++) {
		int u = read() , v = read();
		addedge(u , v) , addedge(v , u);
	}
	
	dep[0] = -1;
	dfs(1 , 0);
	for(int i = 1 ; i <= n ; i++)
		f[1] += dep[i];
	
	dfs2(1 , 0);
	for(int i = 1 ; i <= n ; i++) {
		printf("%lld\n" , f[i]);
	}
	return 0;
}

G - Isosceles Trapezium

題目

![image-20210928214139088]([ABC220]AtCoder Beginner Contest 220.assets/image-20210928214139088.png)

思路

四個點能構成等腰梯形,當且僅當兩點的中垂線與另外兩點的中垂線重合,且中點不重合.

然後大水題,STL亂搞.

程式碼

#include <bits/stdc++.h>
using namespace std;
int read() {
	int re = 0;
	char c = getchar();
	bool negt = false;
	while(c < '0' || c > '9')
		negt |= (c == '-') , c = getchar();
	while(c >= '0' && c <= '9')
		re = (re << 1) + (re << 3) + c - '0' , c = getchar();
	return negt ? -re : re;
}
const int N = 1010;
typedef long long ll;
typedef pair<pair<ll , ll> , ll> line;
typedef pair<ll , ll> point;
line makeline(ll A , ll B , ll C) {
	return make_pair(make_pair(A , B) , C);
}
ll gcd(ll a , ll b) {
	return b == 0 ? a : gcd(b , a % b);
}

int n;
ll x[N] , y[N];
ll w[N];

#define index index_
map <line , int> index;
map <point , ll> a[N * N];
int cnt;
int main() {
	n = read();
	for(int i = 1 ; i <= n ; i++)
		x[i] = read() * 2 , y[i] = read() * 2 , w[i] = read();
	for(int i = 1 ; i <= n ; i++)
		for(int j = i + 1 ; j <= n ; j++) {
			point mid;
			mid.first = (x[i] + x[j]) / 2 , mid.second = (y[i] + y[j]) / 2;
			ll A , B , C;//直線一般式方程,防止噁心的浮點數(精度問題很麻煩),也防止斜率不存在的尷尬情況.
			ll delx = x[i] - x[j];
			ll dely = y[i] - y[j];
			ll sumw = w[i] + w[j];
			if(delx == 0)
				A = 0 , B = 1 , C = -(y[i] + y[j]) / 2;
			else if(dely == 0)
				A = 1 , B = 0 , C = -(x[i] + x[j]) / 2;
			else {
				A = delx , B = dely , C = -dely * mid.second - delx * mid.first;
				ll g = (C == 0 ? gcd(A , B) : gcd(gcd(A , B) , C));//化簡,保證重合的直線寫出來的方程一致
				A /= g , B /= g , C /= g;
				if(A < 0)
					A = -A , B = -B , C = -C;
			}
			line l = makeline(A , B , C);
//			printf("%lld\t%lld\t%lld:\t%lld\n" , A , B , C , sumw);
			int id;
			if(index.find(l) == index.end())
				index[l] = id = ++cnt;
			else
				id = index[l];
			
			if(a[id].find(mid) == a[id].end())
				a[id][mid] = sumw;
			else
				a[id][mid] = max(a[id][mid] , sumw);
		}
	
	ll ans = -1;
	for(int i = 1 ; i <= cnt ; i++) {
		ll max1 = -1 , max2 = -1;
		for(auto j = a[i].begin() ; j != a[i].end() ; j++) {
			ll val = j->second;
			if(val > max1)
				max2 = max1 , max1 = val;
			else if(val > max2)
				max2 = val;
		}
		if(max1 != -1 && max2 != -1 && ans < max1 + max2)
			ans = max1 + max2;
	}
	cout << ans;
	return 0;
}