SDN實驗6:開源控制器實踐——RYU
阿新 • • 發佈:2021-10-13
實驗6:開源控制器實踐——RYU
一、實驗目的
- 能夠獨立部署RYU控制器;
- 能夠理解RYU控制器實現軟體定義的集線器原理;
- 能夠理解RYU控制器實現軟體定義的交換機原理。
二、實驗環境
- 下載虛擬機器軟體Oracle VisualBox或VMware;
- 在虛擬機器中安裝Ubuntu 20.04 Desktop amd64,並完整安裝Mininet;
三、實驗要求
(一)、基本要求
-
完成Ryu控制器的安裝。
-
搭建下圖所示SDN拓撲,協議使用Open Flow 1.0,並連線Ryu控制器。
-
通過Ryu的圖形介面檢視網路拓撲。
-
閱讀Ryu文件的The First Application一節,執行並使用 tcpdump 驗證L2Switch,分析和POX的Hub模組有何不同。
from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_0 class L2Switch(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION] def __init__(self, *args, **kwargs): super(L2Switch, self).__init__(*args, **kwargs) @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def packet_in_handler(self, ev): msg = ev.msg dp = msg.datapath ofp = dp.ofproto ofp_parser = dp.ofproto_parser actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)] data = None if msg.buffer_id == ofp.OFP_NO_BUFFER: data = msg.data out = ofp_parser.OFPPacketOut( datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port, actions=actions, data = data) dp.send_msg(out)
-
h1 ping h2:
-
h2 ping h3:
-
分析和POX的Hub模組有何不同:
二者均通過洪泛傳送報文,但是L2Swtich的下發流表不可檢視。
(二)、進階要求
閱讀Ryu關於simple_switch.py和simple_switch_1x.py的實現,以simple_switch_13.py為例,完成其程式碼的註釋工作;
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # 引入包 from ryu.base import app_manager from ryu.controller import ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER from ryu.controller.handler import set_ev_cls from ryu.ofproto import ofproto_v1_3 from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import ether_types class SimpleSwitch13(app_manager.RyuApp): # 定義openflow版本 OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] def __init__(self, *args, **kwargs): super(SimpleSwitch13, self).__init__(*args, **kwargs) # 定義儲存mac地址到埠的一個對映 self.mac_to_port = {} # 處理EventOFPSwitchFeatures事件 @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser # install table-miss flow entry # # We specify NO BUFFER to max_len of the output action due to # OVS bug. At this moment, if we specify a lesser number, e.g., # 128, OVS will send Packet-In with invalid buffer_id and # truncated packet data. In that case, we cannot output packets # correctly. The bug has been fixed in OVS v2.1.0. match = parser.OFPMatch()#match:流表項匹配,OFPMatch():不匹配任何資訊 actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions)#新增流表項 # 新增流表函式 def add_flow(self, datapath, priority, match, actions, buffer_id=None): # 獲取交換機資訊 ofproto = datapath.ofproto parser = datapath.ofproto_parser # 對action進行包裝 inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] # 判斷是否有buffer_id,生成mod物件 if buffer_id: mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst) else: mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst) # 傳送mod datapath.send_msg(mod) # 觸發packet in事件時,呼叫_packet_in_handler函式 @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): # If you hit this you might want to increase # the "miss_send_length" of your switch if ev.msg.msg_len < ev.msg.total_len: self.logger.debug("packet truncated: only %s of %s bytes", ev.msg.msg_len, ev.msg.total_len) # 獲取包資訊,交換機資訊,協議等等 msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(msg.data) eth = pkt.get_protocols(ethernet.ethernet)[0] # 忽略LLDP型別 if eth.ethertype == ether_types.ETH_TYPE_LLDP: # ignore lldp packet return # 獲取源埠,目的埠 dst = eth.dst src = eth.src dpid = format(datapath.id, "d").zfill(16) self.mac_to_port.setdefault(dpid, {}) self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port) # 學習包的源地址,和交換機上的入埠繫結 # learn a mac address to avoid FLOOD next time. self.mac_to_port[dpid][src] = in_port # 檢視是否已經學習過該目的mac地址 if dst in self.mac_to_port[dpid]: out_port = self.mac_to_port[dpid][dst] # 否則進行洪泛 else: out_port = ofproto.OFPP_FLOOD actions = [parser.OFPActionOutput(out_port)] # 下發流表處理後續包,不再觸發 packet in 事件 # install a flow to avoid packet_in next time if out_port != ofproto.OFPP_FLOOD: match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src) # verify if we have a valid buffer_id, if yes avoid to send both # flow_mod & packet_out if msg.buffer_id != ofproto.OFP_NO_BUFFER: self.add_flow(datapath, 1, match, actions, msg.buffer_id) return else: self.add_flow(datapath, 1, match, actions) data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data # 傳送Packet_out資料包 out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=data) # 傳送流表 datapath.send_msg(out)
- 回答以下問題:
- 程式碼當中的mac_to_port的作用是什麼?
答:儲存mac地址到交換機埠的對映,為交換機自學習功能提供資料結構進行mac埠的儲存 - simple_switch和simple_switch_13在dpid的輸出上有何不同?
答:在simple_switch_13中,會在前端加上0以填充至16位,simple_switch直接輸出dpid - 相比simple_switch,simple_switch_13增加的switch_feature_handler實現了什麼功能?
答:實現了交換機以特性應答訊息響應特性請求 - simple_switch_13是如何實現流規則下發的?
答:在接收到packetin事件後,首先獲取包學習,交換機資訊,乙太網資訊,協議資訊等。如果乙太網型別是LLDP型別,則不予處理。如果不是,則獲取源埠目的埠,以及交換機id,先學習源地址對應的交換機的入埠,再檢視是否已經學習目的mac地址,如果沒有則進行洪泛轉發。如果學習過該mac地址,則檢視是否有buffer_id,如果有的話,則在新增流動作時加上buffer_id,向交換機發送流表 - switch_features_handler和_packet_in_handler兩個事件在傳送流規則的優先順序上有何不同?
答:switch_features_handler下發流表的優先順序更高
四、個人總結
(一)、遇到的問題
- 首先是安裝完ryu後不能建立拓撲,應該是python版本的問題,但我簡單粗暴的重新安裝了一下mininet。
- 一開始執行gui_topology.py時提示no module name,後面發現是在因為在ryu資料夾下開啟的終端,只需要返回031902426目錄下執行即可。
- 建立拓撲後無法ping通,重新啟用ryu控制器,再使用Ryu驗證L2Switch,最後建立拓撲。
(二)、實驗總結
- 通過本次實驗瞭解了開源軟體Ryu控制器的相關操作,能夠獨立部署RYU控制器;能夠理解RYU控制器實現軟體定義的集線器原理;能夠理解RYU控制器實現軟體定義的交換機原理。