1. 程式人生 > 其它 >2021 SDN實驗6:開源控制器實踐——RYU

2021 SDN實驗6:開源控制器實踐——RYU

實驗6:開源控制器實踐——RYU

一、實驗目的

  1. 能夠獨立部署RYU控制器;
  2. 能夠理解RYU控制器實現軟體定義的集線器原理;
  3. 能夠理解RYU控制器實現軟體定義的交換機原理。

二、實驗環境

  1. 下載虛擬機器軟體Oracle VisualBox或VMware;
  2. 在虛擬機器中安裝Ubuntu 20.04 Desktop amd64,並完整安裝Mininet;

三、實驗要求

(一)基本要求

  1. 完成Ryu控制器的安裝。

  2. 搭建下圖所示SDN拓撲,協議使用Open Flow 1.0,並連線Ryu控制器。

  3. 通過Ryu的圖形介面檢視網路拓撲。

  4. 閱讀Ryu文件的The First Application一節,執行並使用 tcpdump 驗證L2Switch,分析和POX的Hub模組有何不同。
    ·

    L2Switch.py程式碼

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser

        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]

        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data

        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions, data = data)
        dp.send_msg(out)

· 命令ryu-manager L2Switch.py執行。

· h1 ping h2

· h1 ping h3

· 根據上方兩張截圖中的結果,與POX的Hub模組相比的區別是:
Hub和L2Switch實現的都是洪泛傳送ICMP報文,比如當h1 ping h2時,h1傳送給h2的ICMP報文,h3也會收到,但L2Switch下發的流表無法檢視,而Hub可以檢視。

(二)進階要求

·閱讀Ryu關於simple_switch.py和simple_switch_1x.py的實現,以simple_switch_13.py為例,完成其程式碼的註釋工作,並回答下列問題:

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# 引入包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
    # 定義openflow版本
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        # 定義儲存mac地址到埠的一個對映
        self.mac_to_port = {}

    # 處理EventOFPSwitchFeatures事件
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)

    # 新增流表函式
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        # 獲取交換機資訊
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # 對action進行包裝
        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        # 判斷是否有buffer_id,生成mod物件
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)
        # 傳送mod
        datapath.send_msg(mod)

    # 處理 packet in 事件
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        # 獲取包資訊,交換機資訊,協議等等
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        # 忽略LLDP型別
        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return

        # 獲取源埠,目的埠
        dst = eth.dst
        src = eth.src

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # 學習包的源地址,和交換機上的入埠繫結
        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port

        # 檢視是否已經學習過該目的mac地址
        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        # 否則進行洪泛
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]

        # 下發流表處理後續包,不再觸發 packet in 事件
        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        # 傳送流表
        datapath.send_msg(out)<details>

回答以下問題:

a)程式碼當中的mac_to_port的作用是什麼
mac_to_port是一個儲存(交換機id, mac地址)到轉發埠的對映。

b)simple_switch和simple_switch_13在dpid的輸出上有何不同?
simple_switch的dpid賦值:dpid = datapath.id
simple_switch_13的dpid賦值:dpid = format(datapath.id, "d").zfill(16)
可以看出,simple_switch直接獲取的id,而simple_switch_13,會在前端加上0將其填充至16位

c)相比simple_switch,simple_switch_13增加的switch_feature_handler實現了什麼功能?
實現交換機以特性應答訊息響應特性請求。

d)simple_switch_13是如何實現流規則下發的?
在接收到packetin事件後,首先獲取包學習,交換機資訊,乙太網資訊,協議資訊等。如果乙太網型別是LLDP型別,則不予處理。如果不是,則獲取源埠目的埠,以及交換機id,先學習源地址對應的交換機的入埠,再檢視是否已經學習目的mac地址,如果沒有則進行洪泛轉發。如果學習過該mac地址,則檢視是否有buffer_id,如果有的話,則在新增流動作時加上buffer_id,向交換機發送流表。

e)switch_features_handler和_packet_in_handler兩個事件在傳送流規則的優先順序上有何不同?
switch_features_handler下發流表的優先順序比_packet_in_handler高
原因:switch_features_handler是在交換機處於協商版本併發送FEATURE-REQUEST報文狀態時呼叫的,而_packet_in_handler是在已收到FEATURE-REPLY報文併發送SET-CONFIG報文時被呼叫的。

(三)實驗報告

實驗難度:
適中。這次的實驗的部分內容在上次實驗都已經做過了,因此做起來不是很困難,但進階部分難度較高。

遇到的問題及解決辦法
   · 問題1:ryu-manager ryu/ryu/app/gui_topology/gui_topology.py --observe-links,報錯,無法在網頁中開啟視覺化拓撲。
    · 解決:看了幾眼命令,發現我的終端在031902210/ryu開啟,此時需要用相對路徑,路徑修改為"./ryu/app/gui_topology/gui_topology.py"便可以順利開啟檢視視覺化拓撲。

   · 問題2:在完成進階要求中的程式碼註釋時遇到了困難,很多地方看的不是很懂。
    · 檢視官方文件、搜尋相關資料和同學完成註解,有了一定理解後,完成了註釋。

收穫感想:
做過了實驗五後,在完成實驗六的基礎要求就比較得心應手,二者連線控制器以及驗證的過程差別不大。通過本次實驗我能夠部署RYU控制器,順利開啟ryu的視覺化圖形介面,此外也進一步熟悉了之前tcpdump命令的用法,同時通過進階要求對simple_switch_13有了一點了解。對於本次實驗,最重要的還是瞭解到Hub和L2Switch的區別就在於下發流表是否可以檢視,希望可以在之後的實驗中能夠更加深入地理解到它們的區別,有機會的話會加以使用