NOIP 模擬賽 簡單題
阿新 • • 發佈:2021-10-15
\(\text{Solution}\)
發現題目就是求 \(\sum[\prod_{i=1}^k x_i \le n]\)
\(k \le 10^9\) 太可怕了
然而發現如果限定 \(x_i > 1\) 那麼 \(i \le \log n\)
於是我們可以愉快地統計了
設 \(f_i(n)\) 表示將 \(n\) 分成 \(i\) 份使 \(x_i > 1\) 的方案數
那麼 \(f_i(n)=\sum_{d|n}f_{i-1}(\frac n d)-f_{i-1}(n)\)
那個減號就是減去 \(d=1\) 時的情況
先不考慮減法,發現它的轉移就是 \(Dirichlet\) 字首和
於是處理 \(f\)
每個詢問還要列舉多少個位置不填 \(1\),組合算一下方案
總的就是 \(O(n \log n \log\log n + Q \log n)\)
\(\text{Code}\)
#include <cstdio> #include <iostream> #define re register #define LL long long using namespace std; const int N = 5e5 + 5, P = 998244353; int mxR, mxK, q, log[N], tot, pr[N], vis[N]; LL f[20][N], inv[20]; inline void read(int &x) { x = 0; int f = 1; char ch = getchar(); while (!isdigit(ch)) f = (ch == '-' ? -1 : f), ch = getchar(); while (isdigit(ch)) x = (x<<3) + (x<<1) + (ch^48), ch = getchar(); x *= f; } void sieve(int n) { for(re int i = 2; i <= n; i++) { if (!vis[i]) pr[++tot] = i; for(re int j = 1; j <= tot && pr[j] * i <= n; j++) { vis[pr[j] * i] = 1; if (i % pr[j] == 0) break; } } } LL Add(LL x, LL y) { x += y; if (x > P) x -= P; return x; } int main() { freopen("easy.in", "r", stdin), freopen("easy.out", "w", stdout); read(mxR), read(mxK), read(q); sieve(mxR); for(re int i = 2; i <= mxR; i++) log[i] = log[i >> 1] + 1, f[1][i] = 1; int lg = log[mxR]; for(re int i = 2; i <= lg; i++) { for(re int j = 1; j <= mxR; j++) f[i][j] = f[i - 1][j]; for(re int j = 1; j <= tot; j++) for(re int k = 1; k * pr[j] <= mxR; k++) f[i][k * pr[j]] = Add(f[i][k * pr[j]], f[i][k]); for(re int j = 1; j <= mxR; j++) f[i][j] = Add(f[i][j], P - f[i - 1][j]); } for(re int i = 1; i <= lg; i++) for(re int j = 1; j <= mxR; j++) f[i][j] = Add(f[i][j], f[i][j - 1]); inv[1] = 1; for(re int i = 2; i <= lg; i++) inv[i] = (P - P / i) * inv[P % i] % P; for(int l, r, k; q; q--) { read(l), read(r), read(k); LL ans = 0, c = 1; for(re int i = 1; i <= log[r]; i++) { c = c * (k - i + 1) % P * inv[i] % P; ans = Add(ans, (f[i][r] - f[i][l - 1] + P) * c % P); } printf("%lld\n", ans + (l <= 1)); } }