Natural Language Question Answering over RDF Data論文學習
阿新 • • 發佈:2021-10-20
研究內容
Given an RDF graph G and a natural language question qNL, our goal is to interpret qNL as a SPARQL query qS, by mapping the semantic items — relations(i.e. properties), entities and classes expressed by qNL to the corresponding triple patterns inqS.(給定一個 RDF 圖 G 和一個自然語言問題 qNL,我們的目標是將 qNL 解釋為一個 SPARQL 查詢 qS,通過將 qNL 表示的語義專案——關係(即屬性)、實體和類對映到相應的三重模式 inqS。
系統架構
the system framework is separated into offline and online two parts.
- Offline Processing: To enable semantic relation extraction in online processing, a dictionary of the RDF relations and their natural language paraphrases is automatically built in advance.(離線處理:為了能夠在線上處理中提取語義關係,預先自動構建 RDF 關係及其自然語言釋義的字典。
- During the online stage, the input question qNL is fed into the following four-step pipeline:(線上階段,輸入問題 qNL 被送入以下四步管道:)
- qNL is parsed into a dependency tree tNL.(qNL 被解析為依賴樹 tNL)
- the phrases in qNL that mention any semantic relation are recognized in tNL with the help of the paraphrase dictionary. (在釋義詞典的幫助下,在 tNL 中可以識別 qNL 中提到任何語義關係的短語。
- these phrases are mapped to the RDF fragments to find their matches of semantic items in the RDF graph G.(將這些短語對映到 RDF 片段以在 RDF 圖 G 中找到它們的語義項匹配。)
- the RDF fragments are joined to compute a reasonable subgraph of graph G, by checking their compatibility based on the dependency tree tNL.(通過基於依賴樹 tNL 檢查它們的相容性,連線 RDF 片段以計算圖 G 的合理子圖。)
- The results are ranked according to the score of semantic similarity and coherence, leading to the target SPARQL.(結果根據語義相似性和連貫性的分數進行排名,從而得出目標 SPARQL。)
如何做實驗
The system is implemented on DBpedia dataset.(該系統是在 DBpedia 資料集上實現的。)