計算給定多項式在給定點x 處的值
阿新 • • 發佈:2022-02-23
計算給定多項式在給定點\(x\)處的值
方法1
\[f(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}+a_nx^n \]double f_1(int n, double a[], double x) {
int i;
double p = a[0];
for (i = 1; i <= n; i++)
p += (a[i] * pow(x, i));
return p;
}
方法2
多項式可以拆成如下形式:
\[f(x)=a_0+x(a_1+x(\cdots(a_{n-1}+x(a_n))\cdots) \]double f_2(int n, double a[], double x) { int i; double p = a[n]; for (i = n; i > 0; i--) p = a[n - 1] + x * p; return p; }
計算給定多項式\(f(x)=\sum_{i=0}^9i\cdot x^i\)在給定點\(x=1.1\)處的值\(f(1.1)\)
#include <stdio.h> #include <time.h> #include <math.h> #define MAXK 1e7 #define MAXN 10 clock_t start, stop; double duration; double f_1(int n, double a[], double x) { int i; double p = a[0]; for (i = 1; i <= n; i++) p += (a[i] * pow(x, i)); return p; } double f_2(int n, double a[], double x) { int i; double p = a[n]; for (i = n; i > 0; i--) p = a[n - 1] + x * p; return p; } void compute_time(double function(), int n, double a[], double x) { start = clock(); for (int i = 0; i < MAXK; i++) function(n, a, x); stop = clock(); duration = ((double) (stop - start)) / CLK_TCK / MAXK; printf("Duration: %.2e s\n", duration); } int main(void) { double a[MAXN]; compute_time(f_1, MAXN - 1, a, 1.1); compute_time(f_2, MAXN - 1, a, 1.1); return 0; }
執行結果:
第二種方法比第一種方法快一個數量級