OpenMP從入門到棄坑(1)
OpenMP使用教程(入門)
0x01 介紹
OpenMP是目前最常用的並行程式設計模型之一,它的出現使得程式設計師可以較為簡單地編寫並行程式(parallel software
)。在使用OpenMP之前,我們首先要了解一下內容
- 瞭解如何編寫c/c++程式。OpenMP支援c/c++以及Fortran,但我們一般都使用c/c++
- 如何將程式連結到某一個Library
OpenMP在計算機之中處於的層級如下圖所示:
0x02 核心語法
- 大多數OpemMP的組成都是類似
#pragma omp construct[clause[clause]...]
的編譯器指令(Compiler directives
),例如#pragma omp parallel num_threads(4)
- 函式原型(
Prototypes
)和使用的型別(type
)定義在:<omp.h>檔案之中,需要下載以及安裝
0x03 編譯
> gcc -fopenmp test.c
> export OMP_NUM_THREADS=n #n is num of the professors in your computer
> ./a.out
0x04 示例程式
#include <omp.h> #include <stdio.h> #include <stdlib.h> int main(){ int nthreads,tid; /* Fork a team of threads giving them their own copies of variables */ #pragma omp parallel private(nthreads, tid) { /* Obtain thread number */ tid = omp_get_thread_num(); printf("Hello World from thread = %d\n", tid); /* Only master thread does this */ if (tid == 0){ nthreads = omp_get_num_threads(); printf("Number of threads = %d\n", nthreads); } } /* All threads join master thread and disband */ return 0; }
Output:
Hello World from thread = 0 Hello World from thread = 1 Hello World from thread = 13 Hello World from thread = 5 Hello World from thread = 14 Hello World from thread = 15 Hello World from thread = 3 Number of threads = 16 Hello World from thread = 8 Hello World from thread = 9 Hello World from thread = 11 Hello World from thread = 6 Hello World from thread = 2 Hello World from thread = 4 Hello World from thread = 10 Hello World from thread = 12 Hello World from thread = 7
0x05 共享記憶體程式
上圖為共享記憶體空間的的多個執行緒示例,一個程序擁有多個執行緒,執行緒通過向共享記憶體進行讀或者寫操作來進行通訊。OS通過策略來協調何時來執行某一個程式,同時有同步(synchronization機制)來協調執行順序,從而保證程式的正確執行。
0x06 執行緒建立
double A[1000];
omp_set_num_threads(4);//request 4 threads
#pragma omp parallel // each thread process the below function
{
int ID=omp_get_thread_num(4); //each thread needs a thread ID
pooh(ID,A)
}
上述程式的執行如下圖所示
![Screen Shot 2022-03-09 at 5.16.56 PM](/Users/leosher/Desktop/Screen Shot 2022-03-09 at 5.16.56 PM.png)
下面講述一個具體的案例:
對於積分\(\int_0^1\frac{4}{1+x^2}dx\),我們可以由積分公式得出是\(\pi\)。但是對於一些複雜的積分,計算機無法根據積分公式求解,那麼就只能進行近似求解:
\[\sum_{i=0}^NF(x_i)\Delta x\approx\pi \]如果\(\Delta x\)設定的越小,那麼我們的結果就越接近精確解,不過程式所耗費的時間就越長,不過我們取的每一個\(\Delta x\)都是不相關的。因此可以進行並行化處理以縮短執行的時間。
首先我們看一下序列(serial)的程式
static long num_steps = 100000000;
double step;
int main ()
{
int i; double x, pi, sum = 0.0;
step = 1.0/(double) num steps;
for (i=0;i< num_steps; i++)
x=(i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}
pi = step * sum:
}
執行的結果為:
time=652.356ms
pi=3.141593
下面再看一下並行化的程式:
#include<omp.h>
#include<time.h>
#include<stdio.h>
static long num_steps=1000000000;
double step;
#define NUM_THREADS 16
void main(){
clock_t start,end;
start =clock();//or time(&start);
int i, nthreads;
double pi,sum[NUM_THREADS];
step=1.0/(double)num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{
int i,id,nthrds;
double x;
id=omp_get_thread_num();
nthrds=omp_get_num_threads();
if(id==0) nthreads=nthrds;//主程序才可以修改全域性變數
for(i=id,sum[id]=0.0;i<num_steps;i+=nthrds){
x=(i+0.5)*step;
sum[id]+=4.0/(1.0+x*x);
}
}
for(i=0,pi=0.0;i<nthreads;i++)pi+=sum[i]*step;
end=clock();
printf("time=%f",(float)(start-end)/1000);
printf("pi=%f",pi);
}
輸出的結果
NUM_THREADS=2
time=293.483000
pi=3.141593
NUM_THREADS=4
time=159.554000
pi=3.141593
注意:我們上述的程式存在著FalsePooling。因為我們可以看出隨著NUM_THREADS的增加,time並非線性減少。有管FalsePooling詳見https://zhuanlan.zhihu.com/p/55917869
0x07 同步
同步(Synchronization)是將一個或多個執行緒進行協調,最常見的有Barrier和Mutual exclusion兩種
Barrier
#pragma omp parallel
{
int id=omp_get_thread_num0;
A[id] = big_calc1 (id);
#pragma omp barrier //barrier
B[id] = big_calc2(id, A);
}
只有當所有執行緒都到達barrier的時候才會繼續執行
Critical
float res;
#pragma omp parallel
{
float B;
int i, id, nthrds;
id = omp_get_thread_num0;
nthrds=omp_get_num_threads0;
for(i=id;i<niters;i+=nthrds){
B= big _job(i);
#pragma omp critical //Threads wait their turn. Only one at a time calls consume()
res += consume (B);
}
}
Atomic
#pragma omp parallel
{
double tmp, B;
B= DOITO;
tmp = big ugly(B);
#pragma omp atomic
X+= tmp;
}
Loop
#pragma omp parallel
{
#pragma omp for
for(i=0;i<n;i++){ //i is private by default
do...;
}
}
Reduction
Reduction(op:list)
Inside a parallel or a work-sharing construct:
- A local copy of each list variable is made and initialized depending on the "op" (e.g. 0 for " "+").
- Updates occur on the local copy.
- Local copies are reduced into a single value and combined with the original global value.