Pytorch初始化模型引數
阿新 • • 發佈:2022-03-24
#高斯分佈
torch.nn.init.normal_(tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0) → torch.Tensor
#均勻分佈
torch.nn.init.uniform_(tensor: torch.Tensor, a: float = 0.0, b: float = 1.0) → torch.Tensor
#常數分佈
torch.nn.init.constant_(tensor: torch.Tensor, val: float) → torch.Tensor
#全0分佈
torch.nn.init.zeros_(tensor: torch.Tensor) → torch.Tensor
#全1分佈
torch.nn.init.ones_(tensor: torch.Tensor) → torch.Tensor
具體程式碼
self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output self.full_att = nn.Linear(attention_dim, 1) # linear layer to calculate values to be softmax-ed torch.nn.init.zeros_(self.encoder_att.weight) torch.nn.init.zeros_(self.encoder_att.bias) torch.nn.init.zeros_(self.decoder_att.weight) torch.nn.init.zeros_(self.decoder_att.bias) # for m in self.modules(): torch.nn.init.zeros_(self.full_att.weight) torch.nn.init.zeros_(self.full_att.bias) for param in self.parameters(): param.requires_grad = False self.relu = nn.ReLU() self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
初始化分為 weight 和 bias 的初始化,要分開