MapReduce高階 分割槽、排序,Combine
阿新 • • 發佈:2022-04-28
一、分割槽
1.1先分析一下具體的業務邏輯,確定大概有多少個分割槽
1.2首先書寫一個類,它要繼承org.apache.hadoop.mapreduce.Partitioner這個類
1.3重寫public int getPartition這個方法,根據具體邏輯,讀資料庫或者配置返回相同的數字
1.4在main方法中設定Partioner的類,job.setPartitionerClass(DataPartitioner.class);
1.5設定Reducer的數量,job.setNumReduceTasks(6);
public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(DataCount.class); job.setMapperClass(DCMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(DataInfo.class); job.setReducerClass(DCReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DataInfo.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setPartitionerClass(DCPartitioner.class); job.setNumReduceTasks(Integer.parseInt(args[2])); job.waitForCompletion(true); } //Map public static class DCMapper extends Mapper<LongWritable, Text, Text, DataInfo>{ private Text k = new Text(); @Override protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, DataInfo>.Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = line.split("\t"); String tel = fields[1]; long up = Long.parseLong(fields[8]); long down = Long.parseLong(fields[9]); DataInfo dataInfo = new DataInfo(tel,up,down); k.set(tel); context.write(k, dataInfo); } } public static class DCReducer extends Reducer<Text, DataInfo, Text, DataInfo>{ @Override protected void reduce(Text key, Iterable<DataInfo> values, Reducer<Text, DataInfo, Text, DataInfo>.Context context) throws IOException, InterruptedException { long up_sum = 0; long down_sum = 0; for(DataInfo d : values){ up_sum += d.getUpPayLoad(); down_sum += d.getDownPayLoad(); } DataInfo dataInfo = new DataInfo("",up_sum,down_sum); context.write(key, dataInfo); } } public static class DCPartitioner extends Partitioner<Text, DataInfo>{ private static Map<String,Integer> provider = new HashMap<String,Integer>(); static{ provider.put("138", 1); provider.put("139", 1); provider.put("152", 2); provider.put("153", 2); provider.put("182", 3); provider.put("183", 3); } @Override public int getPartition(Text key, DataInfo value, int numPartitions) { //向資料庫或配置資訊 讀寫 String tel_sub = key.toString().substring(0,3); Integer count = provider.get(tel_sub); if(count == null){ count = 0; } return count; } }
二、排序
排序MR預設是按key2進行排序的,如果想自定義排序規則,被排序的物件要實WritableComparable介面,在compareTo方法中實現排序規則,然後將這個物件當做k2,即可完成排序
public class InfoBean implements WritableComparable<InfoBean>{ private String account; private double income; private double expenses; private double surplus; public void set(String account,double income,double expenses){ this.account = account; this.income = income; this.expenses = expenses; this.surplus = income - expenses; } @Override public void write(DataOutput out) throws IOException { out.writeUTF(account); out.writeDouble(income); out.writeDouble(expenses); out.writeDouble(surplus); } @Override public void readFields(DataInput in) throws IOException { this.account = in.readUTF(); this.income = in.readDouble(); this.expenses = in.readDouble(); this.surplus = in.readDouble(); } @Override public int compareTo(InfoBean o) { if(this.income == o.getIncome()){ return this.expenses > o.getExpenses() ? 1 : -1; } return this.income > o.getIncome() ? 1 : -1; } @Override public String toString() { return income + "\t" + expenses + "\t" + surplus; } public String getAccount() { return account; } public void setAccount(String account) { this.account = account; } public double getIncome() { return income; } public void setIncome(double income) { this.income = income; } public double getExpenses() { return expenses; } public void setExpenses(double expenses) { this.expenses = expenses; } public double getSurplus() { return surplus; } public void setSurplus(double surplus) { this.surplus = surplus; } } public static class SortMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable>{ private InfoBean k = new InfoBean(); @Override protected void map( LongWritable key, Text value, Mapper<LongWritable, Text, InfoBean, NullWritable>.Context context) throws IOException, InterruptedException { String line = value.toString(); String[] fields = line.split("\t"); k.set(fields[0], Double.parseDouble(fields[1]), Double.parseDouble(fields[2])); context.write(k, NullWritable.get()); } } public static class SortReducer extends Reducer<InfoBean, NullWritable, Text, InfoBean>{ private Text k = new Text(); @Override protected void reduce(InfoBean key, Iterable<NullWritable> values, Reducer<InfoBean, NullWritable, Text, InfoBean>.Context context) throws IOException, InterruptedException { k.set(key.getAccount()); context.write(k, key); } }
三、Combine
combiner的作用就是在map端對輸出先做一次合併,以減少傳輸到reducer的資料量。
job.setCombinerClass(WCReducer.class);
//提交任務
job.waitForCompletion(true);