OpenCV-Python影象輪廓之輪廓特徵詳解
轉載自: https://www.jb51.net/article/232501.htm
前言
影象輪廓是指由位於邊緣、連續的、具有相同顏色和強度的點構成的曲線,它可以用於形狀分析以及物件檢測和識別。
一、輪廓的矩
輪廓的矩包含了輪廓的各種幾何特徵,如面積、位置、角度、形狀等。
cv2.moments()函式用於返回輪廓的矩,其基本格式如下:
ret = cv2.moments(array[, binaryImage]) ret為返回的輪廓的矩,是一個字典物件, 大多數矩的含義比較抽象, 但其中的零階矩(m00)表示輪廓的面積 array為表示輪廓的陣列 binaryImage值為True時,會將array物件中的所有非0值設定為1
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('shape2.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1= np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1,(0,255,0),2) cv2.imshow('Contours',img1) m0 = cv2.moments(contours[0]) m1 = cv2.moments(contours[1]) print('輪廓0的矩:', m0) print('輪廓1的矩:', m1) print('輪廓0的面積:', m0['m00']) print('輪廓1的面積:', m1['m00']) cv2.waitKey(0) cv2.destroyAllWindows()
二、輪廓的面積
cv2.contourArea()函式用於返回輪廓的面積,其基本格式如下:
ret = cv2.contourArea(contour[, oriented])
ret為返回的面積
contour為輪廓
oriented為可選引數, 其引數值為True時, 返回值的正與負表示表示輪廓是順時針還是逆時針, 引數值為False(預設值)時, 函式返回值為絕對值
img = cv2.imread('shape2.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) m0 = cv2.contourArea(contours[0]) m1 = cv2.contourArea(contours[1]) print('輪廓0的面積:', m0) print('輪廓1的面積:', m1)
三、輪廓的長度
cv2.arcLength()函式用於返回輪廓的長度,其基本格式如下:
ret = cv2.cv2.arcLength(contour, closed)
ret為返回的長度
contour為輪廓
closed為布林值, 為True時表示輪廓是封閉的
1 img = cv2.imread('shape2.jpg') 2 3 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 4 5 ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) 6 7 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 8 9 m0 = cv2.arcLength(contours[0], True) 10 m1 = cv2.arcLength(contours[1], True) 11 12 print('輪廓0的長度:', m0) 13 print('輪廓1的長度:', m1)
四、輪廓的近似多邊形
cv2.approxPolyDP()函式用於返回輪廓的近似多邊形,其基本格式如下:
ret = cv2.approxPolyDP(contour, epsilon, closed)
ret為返回的近似多邊形
contour為輪廓
epsilon為精度, 表示近似多邊形接近輪廓的最大距離
closed為布林值, 為True時表示輪廓是封閉的
img = cv2.imread('shape3.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) arcl = cv2.arcLength(contours[0], True) img2 = img1.copy() app = cv2.approxPolyDP(contours[0], arcl*0.05, True) img2 = cv2.drawContours(img2, [app], -1, (255,0,0), 2) cv2.imshow('contours',img2) cv2.waitKey(0) cv2.destroyAllWindows()
五、輪廓的凸包
cv2.convexHull()函式用於返回輪廓的凸包,其基本格式如下:
hull = cv2.convexHull(contours[, clockwise[, returnPointss]])
hull為返回的凸包, 是一個numpy.ndarray物件, 包含了凸包的關鍵點
contours為輪廓
clockwise為方向標記, 為True時, 凸包為順時針方向, 為False(預設值)時, 凸包為逆時針方向
returnPointss為True時(預設值)時, 返回的hull中包含的是凸包關鍵點的座標, 為False時, 返回的是凸包關鍵點在輪廓中的索引
img = cv2.imread('shape3.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) hull = cv2.convexHull(contours[0]) print('returnPoints = Treu 時返回的凸包;\n',hull) hull2 = cv2.convexHull(contours[0], returnPoints=False) print('returnPoints = False時返回的凸包;\n',hull2) cv2.polylines(img1, [hull], True, (255,0,0),2) cv2.imshow('ConvecHull',img1) cv2.waitKey(0) cv2.destroyAllWindows()
六、輪廓的直邊界矩形
輪廓的直邊界矩形是指可容納輪廓的矩形,且矩形的兩條邊必須是平行的,直邊界矩形不一定是面積最小的邊界矩形。
cv2.boundingRect()函式用於返回輪廓的直邊界矩形,其基本格式如下:
ret = cv2.boundingRect(contours)
ret為返回的直邊界矩形, 它是一個四元組, 其格式為(矩形左上角x座標, 矩形左上角y座標, 矩形的寬度, 矩形的高度)
contours為用於計算直邊界矩形的輪廓
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) ret = cv2.boundingRect(contours[0]) print('直邊界矩形:\n', ret) pt1 = (ret[0], ret[1]) pt2 = (ret[0] + ret[2], ret[1] + ret[3]) img2 = img1.copy() img2 = cv2.rectangle(img2, pt1, pt2, (255,0,0), 1) cv2.imshow('Rectangle', img2) cv2.waitKey(0) cv2.destroyAllWindows()
七、輪廓的旋轉矩形
輪廓的旋轉矩形是指可容納輪廓的面積最小的矩形。
cv2.minAreaRect()函式用於返回輪廓的旋轉矩形,其基本格式如下:
box = cv2.minAreaRect(contour)
box為返回的旋轉矩陣, 它是一個三元組, 其格式為((矩形中心點x座標, 矩形中心點y座標), (矩形的寬度, 矩形的高度), 矩形的旋轉角度)
contour為用於計算矩形的輪廓
cv2.minAreaRect()函式返回的結果不能直接用於繪製旋轉矩形,可以使用cv2.boxPoints()函式將其轉換為矩形的頂點座標,其基本格式如下:
points = cv2.boxPoints(box)
points為返回的矩形頂點座標, 座標資料為浮點數
box為cv2.minAreaRect()函式返回的矩形資料
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) cv2.imshow('Contours',img1) # 計算最小旋轉矩形 ret = cv2.minAreaRect(contours[0]) rect = cv2.boxPoints(ret) rect = np.int0(rect) img2 = img1.copy() cv2.drawContours(img2, [rect], 0, (255,0,0), 2) cv2.imshow('Rectangle', img2) cv2.waitKey(0) cv2.destroyAllWindows()
八、輪廓的最小外包圓
cv2.minEnclosingCircle()函式用於返回可容納輪廓的最小外包圓,其基本格式如下:
center, radius = cv2.minEnclosingCircle(contours)
center為圓心
radius為半徑
contours為用於計算最小外包圓的輪廓
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) cv2.imshow('Contours',img1) # 計算最小外包圓 (x, y), radius = cv2.minEnclosingCircle(contours[0]) center = (int(x),int(y)) radius = int(radius) img2 = img1.copy() cv2.circle(img2, center, radius, (255,0,0),2) cv2.imshow('Circle',img2) cv2.waitKey(0) cv2.destroyAllWindows()
九、輪廓的擬合橢圓
cv2.fitEllipse()函式用於返回輪廓的擬合橢圓,其基本格式如下:
ellipse = cv2.fitEllipse(contours)
ellipse為返回的橢圓
contours為用於計算擬合橢圓的輪廓
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) cv2.imshow('Contours',img1) # 計算擬合橢圓 ellipse = cv2.fitEllipse(contours[0]) img2 = img1.copy() cv2.ellipse(img2, ellipse, (255,0,0),2) cv2.imshow('Circle',img2) cv2.waitKey(0) cv2.destroyAllWindows()
十、輪廓的擬合直線
cv2.fitLine()函式用於返回輪廓的擬合直線,其基本格式如下:
line = cv2.fitLine(contours, distType, param, reps, aeps) line為返回的擬合直線 contours為用於計算擬合直線的輪廓 distType為距離引數型別, 決定如何計算擬合直線 param為距離引數, 與距離引數型別有關, 其設定為0時, 函式將自動選擇最優值 reps為計算擬合直線需要的徑向精度, 通常設定為0.01 aeps為計算擬合直線需要的軸向精度, 通常設定為0.01
param距離引數型別:
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) #計算擬合直線 img2 = img1.copy() rows, cols = img.shape[:2] [vx, vy, x, y] = cv2.fitLine(contours[0], cv2.DIST_L1, 0, 0.01, 0.01) lefty = int((-x * vy / vx) + y) righty = int(((cols - x) * vy / vx) + y) cv2.line(img2, (0, lefty), (cols-1, righty), (255,0,0), 2) cv2.imshow('FitLine',img2) cv2.waitKey(0) cv2.destroyAllWindows()
十一、輪廓的最小外包三角形
cv2.minEnclosingTriangle()函式用於返回可容納輪廓的最小外包三角形,其基本格式如下:
retval, triangle = cv2.minEnclosingTriangle(contours)
retval為最小外包三角形的面積
triangle為最小外包三角形
contours為用於計算最小外包三角形的輪廓
1 img = cv2.imread('shape4.jpg') 2 cv2.imshow('original', img) 3 4 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 5 6 ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) 7 8 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 9 10 img1 = np.zeros(img.shape, np.uint8) + 255 11 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) 12 cv2.imshow('Contours',img1) 13 14 # 計算最小外包三角形 15 retval, triangle = cv2.minEnclosingTriangle(contours[0]) 16 triangle = np.int0(triangle) 17 18 img2 = img1.copy() 19 cv2.polylines(img2, [triangle], True, (255,0,0),2) 20 cv2.imshow('Triangle',img2) 21 22 cv2.waitKey(0) 23 cv2.destroyAllWindows()