1. 程式人生 > 其它 >如何寫出一手好 SQL ?

如何寫出一手好 SQL ?

來源:編碼磚家  
連結:cnblogs.com/xiaoyangjia/p/11267191.html

背景

最近頻繁出現慢SQL告警,執行時間最長的竟然高達5分鐘。匯出日誌後分析,主要原因竟然是沒有命中索引和沒有分頁處理

其實這是非常低階的錯誤,我不禁後背一涼,團隊成員的技術水平亟待提高啊。改造這些SQL的過程中,總結了一些經驗分享給大家,如果有錯誤歡迎批評指正。

MySQL效能

最大資料量

拋開資料量和併發數,談效能都是耍流氓 。MySQL沒有限制單表最大記錄數,它取決於作業系統對檔案大小的限制。

檔案系統 單檔案大小限制
FAT32 最大4G
NTFS 最大64GB
NTFS5.0 最大2TB
EXT2 塊大小為1024位元組,檔案最大容量16GB;塊大小為4096位元組,檔案最大容量2TB
EXT3 塊大小為4KB,檔案最大容量為4TB
EXT4 理論可以大於16TB

《阿里巴巴Java開發手冊》提出單錶行數超過500萬行或者單表容量超過2GB,才推薦分庫分表。效能由綜合因素決定,拋開業務複雜度,影響程度依次是硬體配置、MySQL配置、資料表設計、索引優化。500萬這個值僅供參考,並非鐵律。

博主曾經操作過超過4億行資料的單表,分頁查詢最新的20條記錄耗時0.6秒,SQL語句大致是 select field_1,field_2 from table where id < #{prePageMinId} order by id desc limit 20

,prePageMinId是上一頁資料記錄的最小ID。雖然當時查詢速度還湊合,隨著資料不斷增長,有朝一日必定不堪重負。

分庫分表是個週期長而風險高的大活兒,應該儘可能在當前結構上優化,比如升級硬體、遷移歷史資料等等,實在沒轍了再分。對分庫分表感興趣的同學可以閱讀分庫分表的基本思想。

最大併發數

併發數是指同一時刻資料庫能處理多少個請求,由maxconnections和maxuserconnections決定。maxconnections是指MySQL例項的最大連線數,上限值是16384,maxuser*connections是指每個資料庫使用者的最大連線數。

MySQL會為每個連線提供緩衝區,意味著消耗更多的記憶體。如果連線數設定太高硬體吃不消,太低又不能充分利用硬體。一般要求兩者比值超過10%,計算方法如下:

max_used_connections / max_connections * 100% = 3/100 *100% ≈ 3%

檢視最大連線數與響應最大連線數:

show variables like '%max_connections%';show variables like '%max_user_connections%';

在配置檔案my.cnf中修改最大連線數

[mysqld]max_connections = 100max_used_connections = 20

查詢耗時0.5秒

建議將單次查詢耗時控制在0.5秒以內,0.5秒是個經驗值,源於使用者體驗的 3秒原則 。如果使用者的操作3秒內沒有響應,將會厭煩甚至退出。響應時間=客戶端UI渲染耗時+網路請求耗時+應用程式處理耗時+查詢資料庫耗時,0.5秒就是留給資料庫1/6的處理時間。

實施原則

相比NoSQL資料庫,MySQL是個嬌氣脆弱的傢伙。它就像體育課上的女同學,一點糾紛就和同學鬧彆扭(擴容難),跑兩步就氣喘吁吁(容量小併發低),常常身體不適要請假(SQL約束太多)。如今大家都會搞點分散式,應用程式擴容比資料庫要容易得多,所以實施原則是 資料庫少幹活,應用程式多幹活

  • 充分利用但不濫用索引,須知索引也消耗磁碟和CPU。
  • 不推薦使用資料庫函式格式化資料,交給應用程式處理。
  • 不推薦使用外來鍵約束,用應用程式保證資料準確性。
  • 寫多讀少的場景,不推薦使用唯一索引,用應用程式保證唯一性。
  • 適當冗餘欄位,嘗試建立中間表,用應用程式計算中間結果,用空間換時間。
  • 不允許執行極度耗時的事務,配合應用程式拆分成更小的事務。
  • 預估重要資料表(比如訂單表)的負載和資料增長態勢,提前優化。

資料表設計

資料型別

資料型別的選擇原則:更簡單或者佔用空間更小。

  • 如果長度能夠滿足,整型儘量使用tinyint、smallint、medium_int而非int。
  • 如果字串長度確定,採用char型別。
  • 如果varchar能夠滿足,不採用text型別。
  • 精度要求較高的使用decimal型別,也可以使用BIGINT,比如精確兩位小數就乘以100後儲存。

儘量採用timestamp而非datetime。

型別 佔據位元組 描述
datetime 8位元組 '1000-01-01 00:00:00.000000' to '9999-12-31 23:59:59.999999
timestamp 4位元組 '1970-01-01 00:00:01.000000' to '2038-01-19 03:14:07.999999'

相比datetime,timestamp佔用更少的空間,以UTC的格式儲存自動轉換時區。

避免空值

MySQL中欄位為NULL時依然佔用空間,會使索引、索引統計更加複雜。從NULL值更新到非NULL無法做到原地更新,容易發生索引分裂影響效能。儘可能將NULL值用有意義的值代替,也能避免SQL語句裡面包含 is not null的判斷。

text型別優化

由於text欄位儲存大量資料,表容量會很早漲上去,影響其他欄位的查詢效能。建議抽取出來放在子表裡,用業務主鍵關聯。

索引優化

索引分類

  1. 普通索引:最基本的索引。
  2. 組合索引:多個欄位上建立的索引,能夠加速複合查詢條件的檢索。
  3. 唯一索引:與普通索引類似,但索引列的值必須唯一,允許有空值。
  4. 組合唯一索引:列值的組合必須唯一。
  5. 主鍵索引:特殊的唯一索引,用於唯一標識資料表中的某一條記錄,不允許有空值,一般用primary key約束。
  6. 全文索引:用於海量文字的查詢,MySQL5.6之後的InnoDB和MyISAM均支援全文索引。由於查詢精度以及擴充套件性不佳,更多的企業選擇Elasticsearch。

索引優化

  1. 分頁查詢很重要,如果查詢資料量超過30%,MYSQL不會使用索引。

  2. 單表索引數不超過5個、單個索引欄位數不超過5個。

  3. 字串可使用字首索引,字首長度控制在5-8個字元。

  4. 欄位唯一性太低,增加索引沒有意義,如:是否刪除、性別。

  5. 合理使用覆蓋索引,如下所示:

    select loginname, nickname from member where login_name = ?

loginname, nickname兩個欄位建立組合索引,比login_name簡單索引要更快

SQL優化

分批處理

博主小時候看到魚塘挖開小口子放水,水面有各種漂浮物。浮萍和樹葉總能順利通過出水口,而樹枝會擋住其他物體通過,有時還會卡住,需要人工清理。MySQL就是魚塘,最大併發數和網路頻寬就是出水口,使用者SQL就是漂浮物。

不帶分頁引數的查詢或者影響大量資料的update和delete操作,都是樹枝,我們要把它打散分批處理,舉例說明:業務描述:更新使用者所有已過期的優惠券為不可用狀態。

SQL語句:update status=0 FROMcoupon WHERE expire_date <= #{currentDate} and status=1;如果大量優惠券需要更新為不可用狀態,執行這條SQL可能會堵死其他SQL,分批處理虛擬碼如下:

int pageNo = 1;
int PAGE_SIZE = 100;
while(true) {
    List<Integer> batchIdList = queryList('select id FROM `coupon` WHERE expire_date <= #{currentDate} and status = 1 limit #{(pageNo-1) * PAGE_SIZE},#{PAGE_SIZE}');
    if (CollectionUtils.isEmpty(batchIdList)) {
        return;
    }
    update('update status = 0 FROM `coupon` where status = 1 and id in #{batchIdList}')
    pageNo ++;
}

操作符<>優化

通常<>操作符無法使用索引,舉例如下,查詢金額不為100元的訂單:select id from orders where amount != 100;如果金額為100的訂單極少,這種資料分佈嚴重不均的情況下,有可能使用索引。鑑於這種不確定性,採用union聚合搜尋結果,改寫方法如下:

(select id from orders where amount > 100) union all(select id from orders where amount < 100 and amount > 0)

OR優化

在Innodb引擎下or無法使用組合索引,比如:

select id,product_name from orders where mobile_no = '13421800407' or user_id = 100;

OR無法命中mobileno + userid的組合索引,可採用union,如下所示:

(select id,product_name from orders where mobile_no = '13421800407') union(select id,product_name from orders where user_id = 100);

此時id和product_name欄位都有索引,查詢才最高效。

IN優化

  1. IN適合主表大子表小,EXIST適合主表小子表大。由於查詢優化器的不斷升級,很多場景這兩者效能差不多一樣了。
  2. 嘗試改為join查詢,舉例如下:

select id from orders where user_id in (select id from user where level = 'VIP');

採用JOIN如下所示:

select o.id from orders o left join user u on o.user_id = u.id where u.level = 'VIP';

不做列運算

通常在查詢條件列運算會導致索引失效,如下所示:查詢當日訂單

select id from order where date_format(create_time,'%Y-%m-%d') = '2019-07-01';

date_format函式會導致這個查詢無法使用索引,改寫後:

select id from order where create_time between '2019-07-01 00:00:00' and '2019-07-01 23:59:59';

避免Select all

如果不查詢表中所有的列,避免使用 SELECT *,它會進行全表掃描,不能有效利用索引。

Like優化

like用於模糊查詢,舉個例子(field已建立索引):

SELECT column FROM table WHERE field like '%keyword%';

這個查詢未命中索引,換成下面的寫法:

SELECT column FROM table WHERE field like 'keyword%';

去除了前面的%查詢將會命中索引,但是產品經理一定要前後模糊匹配呢?全文索引fulltext可以嘗試一下,但Elasticsearch才是終極武器。

Join優化

join的實現是採用Nested Loop Join演算法,就是通過驅動表的結果集作為基礎資料,通過該結資料作為過濾條件到下一個表中迴圈查詢資料,然後合併結果。如果有多個join,則將前面的結果集作為迴圈資料,再次到後一個表中查詢資料。

  1. 驅動表和被驅動表儘可能增加查詢條件,滿足ON的條件而少用Where,用小結果集驅動大結果集。
  2. 被驅動表的join欄位上加上索引,無法建立索引的時候,設定足夠的Join Buffer Size。
  3. 禁止join連線三個以上的表,嘗試增加冗餘欄位。

Limit優化

limit用於分頁查詢時越往後翻效能越差,解決的原則:縮小掃描範圍 ,如下所示:

select * from orders order by id desc limit 100000,10 耗時0.4秒select * from orders order by id desc limit 1000000,10耗時5.2秒

先篩選出ID縮小查詢範圍,寫法如下:

select * from orders where id > (select id from orders order by id desc  limit 1000000, 1) order by id desc limit 0,10耗時0.5秒

如果查詢條件僅有主鍵ID,寫法如下:

select id from orders where id between 1000000 and 1000010 order by id desc耗時0.3秒

如果以上方案依然很慢呢?只好用遊標了,感興趣的朋友閱讀JDBC使用遊標實現分頁查詢的方法

其他資料庫

作為一名後端開發人員,務必精通作為儲存核心的MySQL或SQL Server,也要積極關注NoSQL資料庫,他們已經足夠成熟並被廣泛採用,能解決特定場景下的效能瓶頸。

分類 資料庫 特性
鍵值型 Memcache 用於內容快取,大量資料的高訪問負載
鍵值型 Redis 用於內容快取,比Memcache支援更多的資料型別,並能持久化資料
列式儲存 HBase Hadoop體系的核心資料庫,海量結構化資料儲存,大資料必備。
文件型 MongoDb 知名文件型資料庫,也可以用於快取
文件型 CouchDB Apache的開源專案,專注於易用性,支援REST API
文件型 SequoiaDB 國內知名文件型資料庫
圖形 Neo4J 用於社交網路構建關係圖譜,推薦系統等

參考:https://www.jianshu.com/p/6864abb4d885

雞湯:你既然已經做出了選擇,又何必去問為什麼選擇。 ——衛莊

近期熱文推薦:

1.1,000+ 道 Java面試題及答案整理(2022最新版)

2.勁爆!Java 協程要來了。。。

3.Spring Boot 2.x 教程,太全了!

4.別再寫滿屏的爆爆爆炸類了,試試裝飾器模式,這才是優雅的方式!!

5.《Java開發手冊(嵩山版)》最新發布,速速下載!

覺得不錯,別忘了隨手點贊+轉發哦!