1. 程式人生 > 其它 >A note on trying to extend the intermediate value theorem

A note on trying to extend the intermediate value theorem

First, it is necessary to introduce the following definitions1,

  • The function is said to be increasing at \(x_{0}\) if for all \(x\)-values in some interval about \(x_{0}\) it is true that when \(x_{0} < x\) then \(y_{0} < y\), and when \(x_{0} > x\) then \(y_{0} > y\).

  • The function is said to be decreasing

    at \(x_{0}\) if for all \(x\)-val ues in some interval about \(x_{0}\) it is true that when \(x_{0} < x\) then \(y_{0} > y\), and when \(x_{0} > x\) then \(y_{0} < y\).

Then the definition of “a function is non-decreasing at \(x_{0}\)” is introduced by extend the definition of increasing above.

  • The function is said to be non-decreasing at \(x_{0}\) if for all \(x\)-values in some interval about \(x_{0}\) it is true that when \(x_{0} < x\) then \(y_{0} \leq y\), and when \(x_{0} > x\) then \(y_{0} \geq y\).

The intermediate value theorem states:

If \(f\) is a continuous function on a closed interval \(\lbrack a,b\rbrack\)

, and if \(y_{0}\) is any value strictly between \(f(a)\) and \(f(b)\), that is \(min\{ f(a),f(b)\} < y_{0} < max\{ f(a),f(b)\}\), then \(y_{0} = f(c)\) for some \(c\) in \((a,b)\).

My original conjecture was to extend it to:

If \(f\) is a continuous function on a closed interval \(\lbrack a,b\rbrack\), and if \(y_{0}\) is any value strictly between \(f(a)\) and \(f(b)\), that is \(min\{ f(a),f(b)\} < y_{0} < max\{ f(a),f(b)\}\), then \(y_{0} = f(c)\) for some \(c\) in \((a,b)\) and \(\mathbf{f}\) is non-decreasing at the \(\mathbf{c}\).

But it was wrong according to the book2, while I still couldn’t understand that. After reading the following proof for the intermediate value theorem3,

I realized I could extend the intermediate value theorem states to:

If \(f\) is a continuous function on a closed interval \(\lbrack a,b\rbrack\), and if \(y_{0}\) is any value strictly between \(f(a)\) and \(f(b)\), that is \(min\{ f(a),f(b)\} < y_{0} < max\{ f(a),f(b)\}\), then there is a \(c = sup(\{ x \mid f(x) < y_{0}\) in \((a,b)\}\)) in \((a,b)\ \)cause \(y_{0} = f(c)\), and such that

  • in every left neighborhood of \(c\), there is always a \(c'\) such that \(f(c') < y_{0}\).

  • for each \(x\) in any right neighborhood of \(c,\ f(x) > y_{0}\).

The following two functions, which are both differentiable and continuous in neighborhoods around 0, are helpful for our consideration about the question.

\[
f(x)=\left\{\begin{aligned}
x^{2} \sin \frac{1}{x}, & \text { if } x<0 \\
x^{2}, & \text { if } x \geq 0
\end{aligned}\right.
\]

\[ f(x)=\left\{\begin{aligned} -x^{2}, & \text { if } x \leq 0 \\ x^{2} \sin \frac{1}{x}, & \text { if } x>0 \end{aligned}\right. \]


  1. Calculus: An Intuitive and Physical Approach, Second Edition, Morris Kline, Chapter 8,Section 3↩︎

  2. Elementary Real Analysis: Second Edition, Brian S. Thomson, Judith B. Bruckner, Andrew M. Bruckner, Section 13.14↩︎

  3. Introduction to Calculus and Analysis Volume I, Reprint of the 1989 edition, Richard Courant, Fritz John, p101↩︎