1. 程式人生 > 實用技巧 >C++物件池

C++物件池

前言

  • 大量使用的物件,重複的建立和銷燬,很耗費效能,這個時候就要使用物件池技術。當物體使用時,如果物件池中有,從物件池中取出使用,沒有就建立,不使用時候,將物體放回物件池,改變狀態就是新的物件。
  • 常使用在飛機彈幕遊戲中,玩家射擊的時候,會建立很多子彈物件,當子彈物件碰到敵人時,會被銷燬。不斷的建立銷燬物件時遊戲幀數會下降,導致卡屏,所以可以使用物件池技術來解決。
  • 物件池根據型別可變,必須使用模板來實現,這樣就會達到我有什麼樣型別,就會有什麼樣的物件池。

效果和程式碼實現

  • 下圖是程式執行的效果:

ObjectPool.h

#pragma once
#ifndef __OBJECTPOOL_H__
#define __OBJECTPOOL_H__
#include<cassert>
#include<mutex>

#ifdef _DEBUG
	#ifndef MyPrintf
	#define MyPrintf(...) printf(__VA_ARGS__)
	#endif
#else
	#ifndef MyPrintf
	#define MyPrintf(...)  
	#endif

#endif // !_Debug

template<typename T,size_t nPoolSize>
class ObjectPool
{
private:
	struct ObjectNodeHeader
	{
		ObjectNodeHeader* pNext;
		char nRef;
		bool bPool;
	};
public:
	ObjectPool()
	{
		MyPrintf("物件池初始化\n");
		_InitObjectPool();
	}
	~ObjectPool()
	{
		MyPrintf("物件池析構\n");
		if (_pBuf != nullptr)
		{
			free(_pBuf);
		}
		_pBuf = nullptr;
	}
	//釋放物件
	void freeObject(void* pObject)
	{
		MyPrintf("釋放物件%p\n", pObject);
		//計算出物件所在的物件資訊頭部地址
		ObjectNodeHeader* pObjNode = (ObjectNodeHeader*)((char*)pObject - sizeof(ObjectNodeHeader));
		assert(1 == pObjNode->nRef);
		pObjNode->nRef = 0;
		if (pObjNode->bPool)
		{
			std::lock_guard<std::mutex> lock(_mutex);
			pObjNode->pNext = _pHeader;
			_pHeader = pObjNode;
		}
		else
		{
			//不在物件池
			free(pObjNode);
		}
	}

	//申請物件
	void* allocObject(size_t size)
	{
		std::lock_guard<std::mutex> lock(_mutex);
		ObjectNodeHeader* pReturn = nullptr;
		if (nullptr == _pHeader)//記憶體耗盡
		{

			pReturn = (ObjectNodeHeader*)malloc(sizeof(T) + sizeof(ObjectNodeHeader));
			pReturn->bPool = false;
			pReturn->nRef = 1;
			pReturn->pNext = nullptr;
			MyPrintf("記憶體耗盡從系統中申請物件%p\n", ((char*)pReturn) + sizeof(ObjectNodeHeader));
		}
		else
		{
			pReturn = _pHeader;
			_pHeader = _pHeader->pNext;
			assert(0 == pReturn->nRef);
			pReturn->nRef = 1;
			MyPrintf("從物件池中申請物件%p\n", ((char*)pReturn) + sizeof(ObjectNodeHeader));
		}
		//跳過頭部的資訊的位元組大小
		return (char*)pReturn + sizeof(ObjectNodeHeader);
	}
protected:

	void _InitObjectPool()
	{
		assert(nullptr == _pBuf);
		if (_pBuf) { return; }
		//計算物件池的大小分配空間
		size_t realsize = sizeof(ObjectNodeHeader) + sizeof(T);
		size_t bufsize = nPoolSize * realsize;
		_pBuf = (char*)malloc(bufsize);
		//初始化物件節點資料
		_pHeader = (ObjectNodeHeader*)_pBuf;
		_pHeader->bPool = true;
		_pHeader->nRef = 0;
		_pHeader->pNext = nullptr;
		//遍歷連結串列結構初始化
		ObjectNodeHeader* pPerNode = _pHeader;
		for (size_t i = 1; i < nPoolSize; ++i)
		{
			ObjectNodeHeader* pCurNode = (ObjectNodeHeader*)(_pBuf + i * realsize);
			pCurNode->bPool = true;
			pCurNode->nRef = 0;
			pCurNode->pNext = nullptr;
			pPerNode->pNext = pCurNode;
			pPerNode = pCurNode;
		}
	}

private:
	ObjectNodeHeader* _pHeader;
	char* _pBuf;
	std::mutex _mutex;
};

//物件介面模板
template<typename T,rsize_t nPoolSize>

class PoolBaseObject
{
public:
	void* operator new(size_t size)
	{
		MyPrintf("呼叫物件接管的new操作\n");
		//從物件池申請
		return _PoolInstance().allocObject(size);
	}
	void operator delete(void* p)
	{
		MyPrintf("呼叫物件接管的delete操作\n");
		_PoolInstance().freeObject(p);
	}
	template<typename ...Args>
	static T* createObject(Args ... args)
	{
		//這裡做一些不方便在建構函式中做的事
		T* obj = new T(args...);
		return obj;
	}
	static void destroyObject(T* pobject)
	{
		delete pobject;
	}
private:
	static ObjectPool<T, nPoolSize>&_PoolInstance()
	{
		static ObjectPool< T, nPoolSize>selfPoolInstance;
		return selfPoolInstance;
	}

};
#endif // !__OBJECTPOOL_H__

額外補充

int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
	for (int& a:arr)
	{
		a = 666;
	}
//	for (int i = 0; i < 10; i++)
//	{
//		int&  a = arr[i];
//		a = 666;
//	}
	for (int a:arr)
	{
		cout << a << " ";
	}
	cout << endl;
 //取裡面的值不加引用,但要改值要加引用
  • 空類大小是1位元組,需要站位。
  • 順序是new->構造->析構->delete
  • foreach是隻讀迴圈
  • for (int a:arr)這種遍歷更香 ~!!