1. 程式人生 > 其它 >5.3.1 (3) 函式的單調性(運用)

5.3.1 (3) 函式的單調性(運用)

\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【基礎過關係列】高二數學同步精品講義與分層練習(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

選擇性第二冊同步鞏固,難度2顆星!

基礎知識

函式單調性與導數

在某個區間\((a ,b)\)內,若\(f'(x)>0\),則函式\(y=f(x)\)在這個區間內單調遞增;
\(f'(x)<0\) ,則函式\(y=f(x)\)在這個區間內單調遞減.
解釋
(1) 如下圖,導數\(f' (x_0)\)

表示函式\(y=f(x)\)的圖象在點\((x_0,f(x_0))\)處的切線的斜率,可發現,
\(x=x_0\)處,\(f' (x_0 )>0\),切線是“左下右上”的上升式,函式\(f(x)\)的圖象也是上升的,函式\(f(x)\))在\(x=x_0\)附近單調遞增;
\(x=x_1\)處,\(f' (x_1 )<0\),切線是“左上右下”的下降式,函式\(f(x)\)的圖象也是下降的,函式\(f(x)\)\(x=x_1\)附近單調遞減.

(2) 若函式\(y=f(x)\)在某個區間\((a ,b)\)內單調遞增,則\(∀x∈(a ,b)\) ,\(f' (x)≥0\)(含等號)恆成立,但不存在一區間\((c ,d)⊆(a ,b)\)
內使得\(f' (x)=0\)
假如存在一區間\((c ,d)⊆(a ,b)\)內使得\(f' (x)=0\),那原函式\(y=f(x)\)在區間\((c ,d)\)內恆等於一個常數,即\(f(x)=m\)(\(m\)是個常數),則原函式不可能在\((a ,b)\)內單調遞增.
\(\qquad \qquad\)
函式\(y=f(x)\)在某個區間\((a ,b)\)內單調遞減有類似結論!
(3)導函式“穿線圖”與原函式“趨勢圖”
① 導函式“穿線圖”關注導函式在各區間的正負,故特別注意函式與x軸的交點情況,
\(f'(x)=x\)\(f' (x)=e^x-1\)的“穿線圖”視為一樣的,它們在\((-∞,0)\)
上為負,在\((0,+∞)\)上為正.
\(\qquad \qquad\)
② 原函式“趨勢圖”僅關注函式在各區間上的單調性,沒顧及其最值或曲線形狀等,
如由導函式\(f' (x)=x-1\)的“穿線圖”易得原函式\(y=f(x)\)\((-∞,0)\)上遞減,在\((0,+∞)\)上為遞增,趨勢圖可如下圖,

③ 後面涉及到函式單調性均可通過分析導函式“穿線圖”得出原函式的單調性.
 

基本方法

【題型1】已知函式單調性求引數範圍

【典題1】 若函式\(f(x)=x^3-3kx+1\)在區間\((1,+∞)\)上單調遞增,則實數\(k\)的取值範圍是(  )
 A.\((-∞,1)\) \(\qquad \qquad \qquad\) B.\((-∞,1]\) \(\qquad \qquad \qquad\) C.\([-1,+∞)\) \(\qquad \qquad \qquad\) D.\([1,+∞)\)
解析 因為\(f(x)=x^3-3kx+1\),所以\(f'(x)=3x^2-3k\)
\(k⩽0\)時,\(f'(x)⩾0\)恆成立,\(f(x)\)\(R\)單調遞增,滿足題意;
\(k>0\)時,令\(f'(x)=3x^2-3k⩾0\)
\(x \leqslant-\sqrt{k}\)\(x⩾\sqrt{k}\)
因為\(f(x)\)在區間\((1,+∞)\)上單調遞增,
所以\(\sqrt{k}⩽1\),即\(0<k⩽1\)
綜上所述,實數\(k\)的取值範圍是\((-∞,1]\)
故選:\(B\)
點撥 \(f(x)\)\((a,b)\)上遞增\(⇒f'(x)≥0\)\((a,b)\)上恆成立,等號是否成立有時需要檢驗; \(f(x)\)\((a,b)\)上遞減\(⇒f'(x)≤0\)\((a,b)\)上恆成立,等號是否成立有時需要檢驗.
 

【鞏固練習】

1.若函式\(f(x)=(x^2-4ax+2) e^x\)\(R\)上單調遞增,則\(a\)的取值範圍是\(\underline{\quad \quad}\).
 

2.已知函式\(f(x)=\sin ⁡ ⁡x+a\cos ⁡ ⁡x\)在區間\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)上是減函式,則實數\(a\)的取值範圍為\(\underline{\quad \quad}\) .
 

3.已知函式\(f(x)=(x-a)\ln⁡ x\),\(a∈R\).若函式\(f(x)\)\((0,+∞)\)上為增函式,則\(a\)的取值範圍\(\underline{\quad \quad}\) .
 

參考答案

  1. 答案 \(\left[-\dfrac{1}{2}, \dfrac{1}{2}\right]\)
    解析 對函式求導:\(f'(x)=(x^2-4ax+2x+2-4a)⋅e^x\)
    由已知有\(f'(x)≥0\)\(R\)上恆成立,
    又因為\(e^x>0\)恆成立,故僅需\(x^2+(2-4a)x+2-4a⩾0\)恆成立,
    \(△=(2-4a)^2-4(2-4a)⩽0\),解得\(-\dfrac{1}{2} ⁡ ⩽a⩽\dfrac{1}{2}\) ⁡ .

  2. 答案 \([1,+∞)\)
    解析 由題意得\(f'(x)=\cos ⁡ ⁡x-a\sin ⁡ ⁡x⩽0\)在區間\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)上恆成立,
    所以 \(a \geqslant \dfrac{\cos x}{\sin x}=\dfrac{1}{\tan x}\)在區間\(\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)上恆成立,
    因為當\(x \in\left(\dfrac{\pi}{4}, \dfrac{\pi}{2}\right)\)時,\(0<\dfrac{1}{\tan x}<1\),所以\(a⩾1\)

  3. 答案 \(\left(-\infty,-e^{-2}\right]\)
    解析 函式\(f(x)=(x-a)\ln⁡ x\),\(a∈R\),則\(f^{\prime}(x)=\ln x+1-\dfrac{a}{x}\)
    函式\(f(x)\)\((0,+∞)\)上為增函式,轉化為\(f'(x)⩾0\)\((0,+∞)\)上恆成立,
    \(a⩽x\ln⁡ x+x\)\((0,+∞)\)上恆成立,
    \(g(x)=x\ln⁡ x+x\)\(x∈(0,+∞)\),則\(g'(x)=\ln⁡ x+2\)
    \(g'(x)=0\)\(x=e^{-2}\),由\(g'(x)>0\)\(x>e^{-2}\),由\(g'(x)<0\)\(0<x<e^{-2}\)
    \(\therefore g(x)\)\((0,e^{-2})\)上單調遞減,在\((e^{-2},+∞)\)上單調遞增,
    \(\therefore\)\(x=e^{-2}\)時,\(g(x)\)取得極小值也是最小值,且\(g(e^{-2})=-e^{-2}\)
    \(\therefore a⩽-e^{-2}\)
    故實數\(a\)的取值範圍為\((-∞,-e^{-2}]\).

【題型2】比較大小

【典題1】\(1<x<y<2\),則(  )
 A.\(e^x+3y<e^y+3x\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B.\(e^x+3y>e^y+3x\)
 C.\(x^3+3y^2<y^3+3x^2\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) D.\(x^3+3y^2>y^3+3x^2\)
解析\(f(x)=e^x-3x\),\(x∈(1,2)\)
\(f'(x)=e^x-3\),由\(f'(x)=0\),可得\(x=\ln⁡ 3\)
所以當\(x∈(1,\ln⁡ 3)\)時,\(f'(x)<0\)\(f(x)\)單調遞減,
\(x∈(\ln⁡ 3,2)\)時,\(f'(x)>0\)\(f(x)\)單調遞增,
所以當\(1<x<y<\ln⁡ 3\)時,\(e^x-3x>e^y-3y\),即\(e^x+3y>e^y+3x\)
\(\ln⁡ 3<x<y<2\)時,\(e^x-3x<e^y-3y\)
\(e^x+3y<e^y+3x\),故\(A\),\(B\)錯誤;
\(g(x)=x^3-3x^2\),\(x∈(1,2)\)
\(f'(x)=3x^2-6x=3x(x-2)<0\)
所以\(g(x)\)\((1,2)\)上單調遞減,
因為\(1<x<y<2\),所以\(x^3+3y^2>y^3+3x^2\),故\(C\)錯誤,\(D\)正確.
故選:\(D\)
點撥 需要根據不等式建構函式,再通過函式單調性判斷大小.
 

【鞏固練習】

1.若\(x, y \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\),且\(x\sin ⁡ x-y\sin ⁡ y>0\),則下列不等式一定成立的是(  )
 A.\(x<y\) \(\qquad \qquad \qquad \qquad\) B.\(x>y\) \(\qquad \qquad \qquad \qquad\) C.\(|x|<|y|\) \(\qquad \qquad \qquad \qquad\) D.\(|x|>|y|\)
 

2.若對於任意的\(0<x_1<x_2<a\),都有 \(\dfrac{\ln x_1}{x_1}-\dfrac{\ln x_2}{x_2}<\dfrac{1}{x_2}-\dfrac{1}{x_1}\),則\(a\)的最大值為(  )
 A.\(2e\) \(\qquad \qquad \qquad \qquad\) B.\(e\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{2}\)
 

3.若\(0<x_1<x_2<1\),則下列結論正確的是(  )
 A.\(\ln \dfrac{x_1}{x_2}<e^{x_1}-e^{x_2}\) \(\qquad \qquad \qquad \qquad\) B. \(\ln \dfrac{x_1}{x_2}>e^{x_1}-e^{x_2}\)
 C.\(\dfrac{x_1}{x_2}>\sqrt{e^{x_1-x_2}}\) \(\qquad \qquad \qquad \qquad \qquad\) D. \(\dfrac{x_1}{x_2}<\sqrt{e^{x_1-x_2}}\)
 

參考答案

  1. 答案 \(D\)
    解析\(f(x)=x\sin ⁡ x\)\(x \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\),則\(f(x)\)為偶函式,
    \(x>0\)時,\(f'(x)=\sin ⁡ x+x\cos ⁡ x>0\),即\(f(x)\)\(\left[0, \dfrac{1}{2} \pi\right]\)上單調遞增,
    根據偶函式的對稱性可知,\(f(x)\)\(\left[-\dfrac{1}{2} \pi, 0\right)\)上單調遞減,距離對稱軸越遠,函式值越大,
    \(x\sin ⁡ x-y\sin ⁡ y>0\),可得\(x\sin ⁡ x>y\sin ⁡ y\),即\(f(x)>f(y)\)
    從而可得\(|x|>|y|\)
    故選:\(D\)

  2. 答案 \(C\)
    解析 \(\because \dfrac{\ln x_1}{x_1}-\dfrac{\ln x_2}{x_2}<\dfrac{1}{x_2}-\dfrac{1}{x_1}\)\(\therefore \dfrac{\ln x_1+1}{x_1}<\dfrac{\ln x_2+1}{x_2}\)
    據此可得函式\(f(x)=\dfrac{\ln x+1}{x}\)在定義域\((0,a)\)上單調遞增,
    其導函式:\(f^{\prime}(x)=\dfrac{1-(\ln x+1)}{x^2}=-\dfrac{\ln x}{x^2} \geq 0\)\((0,a)\)上恆成立,
    據此可得:\(0<x≤1\)
    即實數\(a\)的最大值為\(1\)
    故選:\(C\)

  3. 答案 \(D\)
    解析 對於\(A\):由\(\ln \dfrac{x_1}{x_2}<e^{x_1}-e^{x_2}\)
    \(\ln x_1-\ln x_2<e^{x_1}-e^{x_2}\),得:\(e^{x_1}-\ln x_1>e^{x_2}-\ln x_2\)
    \(f(x)=e^x-\ln x\),則\(f(x_1)>f(x_2)\)
    由函式\(f(x)=e^x-\ln x\),得:\(f'(x)=e^x-\dfrac{1}{x} ⁡\)\(f'(x)\)\((0,1)\)遞增,
    \(f'(1)=e-1>0\)\(x→0\)時,\(f'(x)→-∞\)
    故存在\(x_0∈(0,1)\),使得\(f'(x_0)=0\)
    \(f(x)\)\((0,x_0)\)遞減,在\((x_0,1)\)遞增,
    ①若\(x_0<x_1<x_2<1\),則\(f(x_1 )<f(x_2 )\)
    ②若\(0<x_1<x_2<x_0\),則\(f(x_1 )>f(x_2 )\)
    ③若\(x_1<x_0<x_2\),則\(f(x_1 )\)\(f(x_2 )\)無法比較大小,故\(A\)錯誤;
    同理\(B\)錯誤;
    對於\(C\):令\(g(x)=x^2 e^x\)\((0<x<1)\)
    \(g'(x)=e^x (x^2+2x)>0\)
    \(g(x)\)\((0,1)\)遞增,由\(0<x_1<x_2<1\),得\(g(x_1 )<g(x_2 )\)
    \(x_1^2 e^{x_1}<x_2^2 e^{x_2}\),即\(\left(\dfrac{x_1}{x_2}\right)^2<\dfrac{e^{x_2}}{e^{x_1}}\)
    \(\dfrac{x_1}{x_2}<\sqrt{e^{x_2-x_1}}\)
    \(C\)錯誤,\(D\)正確;
    故選:\(D\)
     

【題型3】比較數值大小

【典題1】\(a=\dfrac{\ln 4}{4}\), \(b=\dfrac{\ln 5.3}{5.3}\)\(c=\dfrac{\ln 6}{6}\),則\(a\)\(b\)\(c\)的大小是(  )
 A.\(a<b<c\) \(\qquad \qquad\) B.\(c<b<a\) \(\qquad \qquad\) C.\(c<a<b\) \(\qquad \qquad\) D.\(b<a<c\)
解析\(f(x)=\dfrac{\ln x}{x}\)\(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
\(f'(x)>0\),可得\(0<x<e\),令\(f'(x)<0\),可得\(x>e\)
所以\(f(x)\)\((0,e)\)上單調遞增,在\((e,+∞)\)上單調遞減,
因為\(e<4<5.3<6\)
所以\(f(4)>f(5.3)>f(6)\)
\(\dfrac{\ln 4}{4}>\dfrac{\ln 5.3}{5.3}>\dfrac{\ln 6}{6}\),即\(a>b>c\)
故選:\(B\)
點撥 需要數值的結構特點建構函式,再通過函式單調性判斷大小.
 

【典題2】 已知 \(a=e^{0.1}-1\)\(b=\sin ⁡ ⁡0.1\)\(c=\ln ⁡1.1\),則(  )
 A.\(a<b<c\) \(\qquad \qquad\) B.\(b<c<a\) \(\qquad \qquad\) C.\(c<a<b\) \(\qquad \qquad\) D.\(c<b<a\)
解析\(f(x)=e^x-x-1\),則\(f'(x)=e^x-1\)
\(x∈(0,+∞)\)時,\(f'(x)>0\),故\(f(x)\)\((0,+∞)\)上是增函式,
\(f(0.1)>f(0)\),即 \(e^{0.1}-0.1-1>0\),故\(a=e^{0.1}-1>0.1\)
\(g(x)=\sin ⁡ ⁡x-x\),則\(g'(x)=\cos ⁡ ⁡x-1<0\)\((0,1)\)上恆成立,
\(g(x)=\sin ⁡ ⁡x-x\)\((0,1)\)上單調遞減,
\(g(0.1)<g(0)\),即\(\sin ⁡ ⁡0.1-0.1<0\),即\(b=\sin ⁡ ⁡0.1<0.1\)
\(h(x)=\ln ⁡ (x+1)-\sin ⁡ ⁡x\)
\(h^{\prime}(x)=\dfrac{1}{x+1}-\cos x=\dfrac{1-(x+1) \cos x}{x+1}\)
\(m(x)=1-(x+1)\cos ⁡ ⁡x\)
\(m'(x)=-\cos ⁡ ⁡x+(x+1)\sin ⁡ ⁡x\)
易知\(m'(x)\)\(\left(0, \dfrac{\pi}{6}\right)\)上是增函式,
\(m^{\prime}\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{2}+\left(1+\dfrac{\pi}{6}\right) \dfrac{1}{2}=\dfrac{-6 \sqrt{3}+6+\pi}{12}<0\)
\(m'(x)<0\)\(\left(0, \dfrac{\pi}{6}\right)\)上恆成立,故\(m(x)\)\(\left(0, \dfrac{\pi}{6}\right)\)上是減函式,
\(\because m(0)=1-1=0\),故\(m(x)<0\)\(\left(0, \dfrac{\pi}{6}\right)\)上恆成立,
\(h'(x)<0\)\(\left(0, \dfrac{\pi}{6}\right)\)上恆成立,故\(h(x)\)\(\left(0, \dfrac{\pi}{6}\right)\)上是減函式,
\(h(0.1)<h(0)=0\),即\(\ln ⁡ 1.1-\sin ⁡ ⁡0.1<0\),即\(c<b\)
\(c<b<a\)
故選:\(D\)
 

【鞏固練習】

1.已知 \(a=\dfrac{\ln \sqrt{2}}{4}\)\(b=\dfrac{1}{e^2}\)\(c=\dfrac{\ln \pi}{2 \pi}\),則\(a\)\(b\)\(c\)的大小關係為(  )
 A.\(a<c<b\) \(\qquad \qquad\) B. \(b<a<c\) \(\qquad \qquad\) C. \(a<b<c\) \(\qquad \qquad\) D. \(c<a<b\)
 

2.已知\(a=\dfrac{3}{\ln 3}\)\(b=e\)\(c=\dfrac{e^2}{2}\)(\(e\)為然對數的底數),則\(a\)\(b\)\(c\)的大小關係為(  )
 A.\(c>a>b\) \(\qquad \qquad\) B.\(c>b>a\) \(\qquad \qquad\) C.\(a>c>b\) \(\qquad \qquad\) D.\(b>c>a\)
 

3.設\(a=e^{-1}\)\(b=\dfrac{1}{2} e^{-\frac{1}{2}}\)\(c=\ln ⁡ 2\),則\(a\)\(b\)\(c\)的大小關係為(  )
 A.\(b<c<a\) \(\qquad \qquad\) B.\(a<b<c\) \(\qquad \qquad\) C. \(b<a<c\) \(\qquad \qquad\) D. \(c<a<b\)
 

4.設 \(a=\dfrac{10}{11}\)\(b=\dfrac{1}{e^{0.1}}\)\(c=0.9\),則(  )
 A.\(c<b<a\) \(\qquad \qquad\) B.\(c<a<b\) \(\qquad \qquad\) C.\(b<c<a\) \(\qquad \qquad\) D.\(a<c<b\)
 

參考答案

  1. 答案 \(C\)
    解析 因為\(a=\dfrac{\ln \sqrt{2}}{4}=\dfrac{\ln 2}{8}=\dfrac{2 \ln 2}{16}=\dfrac{\ln 4}{16}\)\(b=\dfrac{1}{e^2}=\dfrac{\ln e}{e^2}\)\(c=\dfrac{\ln \pi}{2 \pi}=\dfrac{\ln \sqrt{\pi}}{\pi}\)
    所以建構函式 \(f(x)=\dfrac{\ln x}{x^2}\)
    \(f^{\prime}(x)=\dfrac{x-2 x \ln x}{x^4}=\dfrac{1-2 \ln x}{x^3}\)
    \(f'(x)>0\)\(0<x<\sqrt{e}\);令\(f'(x)<0\)\(x>\sqrt{e}\)
    所以函式\(f(x)\)\((0,\sqrt{e})\)上單調遞增,在\((\sqrt{e},+∞)\)上單調遞減,
    因為\(\sqrt{e}<\sqrt{\pi}<e<4\)
    所以\(f(\sqrt{\pi})>f(e)>f(4)\),即\(c>b>a\).
    故選:\(C\)

  2. 答案 \(A\)
    解析 \(\because a=\dfrac{3}{\ln 3}\)\(b=e=\dfrac{e}{\ln e}\)\(c=\dfrac{e^2}{2}=\dfrac{e^2}{\ln e^2}\)
    \(\therefore\)\(f(x)=\dfrac{x}{\ln x}\),則 \(f^{\prime}(x)=\dfrac{\ln x-1}{(\ln x)^2}\)
    \(\therefore\)\(x∈(e,+∞)\)時,\(f'(x)>0\)
    \(\therefore f(x)\)\([e,+∞)\)上是增函式,
    \(a=\dfrac{3}{\ln 3}=f(3)\)\(b=e=\dfrac{e}{\ln e}=f(\mathrm{e})\)\(c=\dfrac{e^2}{2}=\dfrac{e^2}{\ln e^2}=f\left(e^2\right)\)
    \(e<3<e^2\),則\(c>a>b\)
    故選:\(A\)

  3. 答案 \(C\)
    解析\(\text { 沒 } f(x)=x e^{-x}\) ,則 \(f^{\prime}(x)=(1-x) e^{-x}\)
    \(x≤1\)時,\(f'(x)≥0\)\(f(x)\)單調遞增,
    \(x>1\)時,\(f'(x)<0\)\(f(x)\)單調遞減,
    \(\therefore f(1)>f(\dfrac{1}{2} ⁡ )\),即\(a>b\)
    \(\because c=\ln 2>\ln \sqrt{e}=\dfrac{1}{2}>\dfrac{1}{e}=a\)\(\therefore b<a<c\)
    故選:\(C\)

  4. 答案 \(A\)
    解析\(f(x)=e^x-(x+1)\),則\(f'(x)=e^x-1\)
    \(x>0\)時,\(f'(x)>0\),當\(x<0\)時,\(f'(x)<0\)
    \(\therefore\)\(x=0\)時,\(f(x)\)取得最小值,即\(f(x)⩾f(0)=0\)
    \(\therefore e^x⩾x+1\)\(\therefore e^{0.1}>0.1+1=1.1\)
    \(\therefore \dfrac{1}{e^{0.1}}<\dfrac{1}{1.1}=\dfrac{10}{11}\),即\(b<a\)
    \(\therefore \dfrac{1}{e^{0.1}}=e^{-0.1}>-0.1+1=0.9\),即\(b>c\)
    綜上,可得\(c<b<a\)
    故選:\(A\)
     

分層練習

【A組---基礎題】

1.已知函式\(f(x)=(x^2-4x+a) e^x\)在區間\([-2,3]\)上單調遞減,則實數\(a\)的取值範圍是(  )
 A.\((-∞,-4]\) \(\qquad \qquad\) B.\((-∞,5]\) \(\qquad \qquad\) C.\((-∞,1]\) \(\qquad \qquad\) D.\((-∞,-8]\)
 

2.已知\(a=\dfrac{\ln 3}{3}\)\(b=\dfrac{1}{e}\)\(c=\dfrac{\ln 5}{5}\),則以下不等式正確的是(  )
 A.\(c>b>a\) \(\qquad \qquad\) B.\(a>b>c\) \(\qquad \qquad\) C.\(b>a>c\) \(\qquad \ \qquad\) D.\(b>c>a\)
 

3.已知\(a=\dfrac{1}{e}\)\(b=\dfrac{\ln 5}{5}\)\(c=\dfrac{2}{5}\),則\(a\)\(b\)\(c\)的大小關係為(  )
 A.\(b<c<a\)\(\qquad \qquad\) B.\(c<a<b\) \(\qquad \qquad\) C.\(c<b<a\) \(\qquad \qquad\) D.\(b<a<c\)
 

4.下列不等式正確的是(  )
 A.\(\dfrac{\ln 2}{2}>\dfrac{\ln 4}{4}\) \(\qquad \qquad\) B.\(\dfrac{2 \ln 3}{3}>\ln 2\) \(\qquad \qquad\) C.\(e\ln ⁡ 10>10\) \(\qquad \qquad\) D. \(2^{\sqrt{6}}>6\)
 

5.設\(a=e^{0.5}\)\(b=\dfrac{3}{e}\)\(c=\ln ⁡ 3\),其中\(e\)為自然對數的底數,則\(a\)\(b\)\(c\)的大小關係是(  )
 A.\(c<a<b\) \(\qquad \qquad\) B. \(b<c<a\) \(\qquad \qquad\) C. \(a<c<b\) \(\qquad \qquad\) D. \(c<b<a\)
 

6.已知\(a=\ln \sqrt[3]{3}\)\(b=e^{-1}\)\(c=\ln ⁡ (e+1)-1\),則(  )
 A.\(a<b<c\) \(\qquad \qquad\) B. \(c<a<b\) \(\qquad \qquad\) C. \(a<c<b\) \(\qquad \qquad\) D. \(b<c<a\)
 

7.若\(\ln x-\ln y<\dfrac{1}{\ln x}-\dfrac{1}{\ln y}(x>1, y>1)\),則(  )
 A. \(e^{y-x}>1\) \(\qquad \qquad\) B. \(e^{y-x}<1\) \(\qquad \qquad\) C. \(e^{y-x-1}>1\) \(\qquad \qquad\) D. \(e^{y-x-1}<1\)
 

8.若\(\alpha, \beta \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\),且\(α\sin ⁡ α-β\sin ⁡ β>\cos ⁡ α-\cos ⁡ β\),則下列結論中必定成立的是(  )
 A.\(α>β\) \(\qquad \qquad \qquad\) B.\(α>-β\) \(\qquad \qquad \qquad\) C.\(α<β\) \(\qquad \qquad \qquad\) D.\(|α|>|β|\)
 

9.已知 \(0<\alpha<\beta<\dfrac{\pi}{2}\),則下列不等式中恆成立的是(  )
 A.\(α^α<β^β\)\(\qquad \qquad \qquad\) B.\(α^α≤β^β\) \(\qquad \qquad \qquad\) C.\(α^β>β^α\) \(\qquad \qquad \qquad\) D.\(α^β<β^α\)
 

10.已知函式\(f(x)=\dfrac{1}{2} ⁡ x^2+2ax-\ln ⁡ x\),若\(f(x)\)在區間\([1,3]\)上單調遞增,則實數\(a\)的範圍為\(\underline{\quad \quad}\) .
 

參考答案

  1. 答案 \(A\)
    解析 因為函式\(f(x)=(x^2-4x+a) e^x\)\([-2,3]\)上單調遞減,
    所以\(f'(x)=(x^2-2x+a-4) e^x⩽0\)\([-2,3]\)上恆成立,
    \(x^2-2x+a-4⩽0\)\([-2,3]\)上恆成立,
    \(a \leqslant\left(-x^2+2 x+4\right)_{\text {min }}\)
    \(-x^2+2x+4\)的最小值為\(-4\),所以\(a⩽-4\)
    故選:\(A\)

  2. 答案 \(C\)
    解析\(f(x)=\dfrac{\ln x}{x}\),則 \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    \(x>e\)時,\(f'(x)<0\),函式單調遞減,
    因為\(5>3>e\),所以\(f(5)<f(3)<f(e)\)
    \(\dfrac{\ln 5}{5}<\dfrac{\ln 3}{3}<\dfrac{\ln e}{e}\),即\(b>a>c\)
    故選:\(C\)

  3. 答案 \(D\)
    解析 \(\because a-c=\dfrac{1}{e}-\dfrac{2}{5}=\dfrac{5-2 e}{5 e}<0\)\(\therefore a<c\)
    \(f(x)=\dfrac{\ln x}{x}\),則\(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    故當\(x∈(e,+∞)\)時, \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}<0\)
    \(f(x)\)\([e,+∞)\)上是減函式,
    \(a=\dfrac{1}{e}=f(\mathrm{e})\)\(b=\dfrac{\ln 5}{5}=f(5)\)
    \(b<a\),故\(b<a<c\)
    故選:\(D\)

  4. 答案 \(B\)
    解析 因為 \(\dfrac{\ln 4}{4}=\dfrac{2 \ln 2}{4}=\dfrac{\ln 2}{2}\)\(A\)錯誤;
    \(2\ln ⁡ 3=\ln ⁡ 9\)\(3\ln ⁡ 2=\ln ⁡ 8\)\(\ln ⁡ 9>\ln ⁡ 8\),故\(2\ln ⁡ 3>3\ln ⁡ 2\)
    所以 \(\dfrac{2 \ln 3}{3}>\ln 2\)\(B\)正確;
    \(f(x)=\dfrac{\ln x}{x}\),則 \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    易得,當\(0<x<e\)時,\(f'(x)>0\),函式單調遞增,
    \(x>e\)時,\(f'(x)<0\),函式單調遞減,
    \(f(10)<f(e)\)
    所以 \(\dfrac{\ln 10}{10}<\dfrac{1}{e}\),即\(e\ln ⁡ 10<10\)\(C\)錯誤;
    根據二次函式與冪函式性質可知,當\(2<x<4\)時,\(2^x<x^2\)
    所以 \(2^{\sqrt{6}}<\sqrt{6}^2=6\)\(D\)錯誤.
    故選:\(B\)

  5. 答案 \(D\)
    解析 易知\(a=e^{0.5}>\left(\dfrac{9}{4}\right)^{0.5}=1.5\)\(b=\dfrac{3}{e}<\dfrac{3}{2}=1.5\)\(c=\ln 3<\ln \sqrt{e^3}=1.5\)
    \(f(x)=\ln x-\dfrac{x}{e}\),則\(f^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{e}\)
    故當\(x∈(e,+∞)\)時,\(f'(x)<0\)
    \(f(x)\)\((e,+∞)\)上是減函式,
    \(f(e)=0\),故\(f(3)<0\)
    \(\ln 3-\dfrac{3}{e}<0\),即 \(\ln 3<\dfrac{3}{e}\)
    \(c<b<a\)
    故選:\(D\)

  6. 答案 \(B\)
    解析\(f(x)=\dfrac{\ln x}{x}(x \geq e)\)
    \(f^{\prime}(x)=\dfrac{1-\ln x}{x^2}<0\),即\(f(x)\)\([e,+∞)\)上單調遞減,
    所以\(a=\ln \sqrt[3]{3}=\dfrac{1}{3} \ln 3=f(3)\)\(b=e^{-1}=\dfrac{1}{e}=f(e)\),所以\(a<b\)
    因為\(c=\ln (e+1)-1=\ln \dfrac{e+1}{e}=\ln \left(1+\dfrac{1}{e}\right)\)
    因為\(\sqrt[3]{3}>1+\dfrac{1}{e}\),所以 \(\ln \sqrt[3]{3}>\ln \left(1+\dfrac{1}{e}\right)\),即\(a>c\)
    綜上,\(b>a>c\).
    故選:\(B\)

  7. 答案 \(A\)
    解析 依題意, \(\ln x-\dfrac{1}{\ln x}<\ln y-\dfrac{1}{\ln y}\)
    \(f(t)=t-\dfrac{1}{t}\),則 \(f^{\prime}(t)=1+\dfrac{1}{t^2}>0\)
    \(\therefore\)函式\(f(t)\)\(R\)上單調遞增,
    \(\because \ln x-\dfrac{1}{\ln x}<\ln y-\dfrac{1}{\ln y}\),即 \(f(\ln x)<f(\ln y)\)
    \(\therefore \ln x<\ln y\)
    \(\therefore 1<x<y\)
    \(\therefore y-x>0\)
    \(\therefore e^{y-x}>e^0=1\)
    故選:\(A\)

  8. 答案 \(D\)
    解析 不等式\(α\sin ⁡ α-β\sin ⁡ β>\cos ⁡ α-\cos ⁡ β\),可整理為\(α\sin ⁡ α-\cos ⁡ α>β\sin ⁡ β-\cos ⁡ β\)
    \(f(x)=x\sin ⁡ x-\cos ⁡ x\)\(x \in\left[-\dfrac{\pi}{2}, \dfrac{\pi}{2}\right]\)
    上述不等式等價於\(f(α)>f(β)\)
    \(\because f(-x)=(-x)\sin ⁡ (-x)-\cos ⁡ (-x)=x\sin ⁡ x-\cos ⁡ x=f(x)\)
    \(\therefore f(x)\)為偶函式.
    \(f'(x)=2\sin ⁡ x+x\cos ⁡ x\)
    \(\therefore\)\(0<x≤\dfrac{\pi}{2} ⁡\)時,\(\sin ⁡ x>0\)\(x\cos ⁡ x≥0\)\(\therefore f'(x)>0\)
    \(\therefore f(x)\)\(\left(0, \dfrac{\pi}{2}\right]\)上單調遞增,在 \(\left[-\dfrac{\pi}{2}, 0\right)\)上單調遞減.
    結合\(f(x)\)的單調性和奇偶性可作出函式\(f(x)\)的大致草圖如下:

    \(\because f(α)>f(β)\)\(\therefore |α|>|β|\)
    故選:\(D\)

  9. 答案 \(D\)
    解析 建構函式 \(f(x)=\dfrac{\ln x}{x}\),則 \(f^{\prime}(x)=\dfrac{1-\ln x}{x}\)
    \(f'(x)>0\),解得\(0<x<e\),令\(f'(x)<0\),解得\(x>e\)
    \(\therefore\)函式\(f(x)\)在(0,e)上單調遞增,在(e,+∞)上單調遞減,
    \(\therefore\)函式\(f(x)\)\(\left(0, \dfrac{\pi}{2}\right)\)上單調遞增,
    \(\therefore f(α)<f(β)\),即 \(\dfrac{\ln \alpha}{\alpha}<\dfrac{\ln \beta}{\beta}\)
    \(\therefore β\ln α<α\ln β\),即\(\ln α^β<\ln β^α\)
    \(\therefore α^β<β^α\)
    故選:\(D\)

  10. 答案 \([0,+∞)\)
    解析 由題意知,\(f'(x)=x+2a-\dfrac{1}{x} ⁡ ⩾0\)\([1,3]\)上恆成立,
    \(2a⩾\dfrac{1}{x} ⁡ -x\)
    又函式\(y=\dfrac{1}{x} ⁡ -x\)\([1,3]\)上單調遞減,
    所以當\(x=1\)時,函式\(y\)取得最大值,為\(0\)
    所以\(2a≥0\),即\(a≥0\)
     

【B組---提高題】

1.若\(x,y∈(0,+∞)\)\(x+\ln ⁡ x=e^y+\sin ⁡ ⁡y\),則(  )
 A.\(\ln ⁡ (x-y)<0\) \(\qquad \qquad\) B.\(\ln ⁡ (y-x)>0\) \(\qquad \qquad\) C.\(x<e^y\) \(\qquad \qquad\) D.\(y<\ln ⁡ x\)
 

2.已知\(a=8^{10}\)\(b=9^9\)\(c=10^8\),則\(a\)\(b\)\(c\)的大小關係為(  )
 A.\(b>c>a\) \(\qquad \qquad\) B.\(b>a>c\) \(\qquad \qquad\) C.\(a>c>b\) \(\qquad \qquad\) D.\(a>b>c\)
 

參考答案

  1. 答案 \(C\)
    解析\(f(x)=x-\sin ⁡ ⁡x(x>0)\),則\(f'(x)=1-\cos ⁡ ⁡x⩾0\)(不恆為零),
    \(f(x)\)\((0,+∞)\)上為增函式,故\(f(x)>f(0)=0\)
    所以\(x>\sin ⁡ ⁡x\),故\(y>\sin ⁡ ⁡y\)\((0,+∞)\)上恆成立,
    所以\(x+\ln ⁡ x<e^y+y=e^y+\ln ⁡ e^y\)
    \(g(x)=x+\ln ⁡ x\)\((0,+∞)\)上的增函式,
    \(x<e^y\),即\(\ln ⁡ x<y\)
    所以\(C\)成立,\(D\)錯誤.
    \(x=e\),考慮\(1+e=e^y+\sin ⁡ ⁡y\)的解,若\(y⩾e+1\)
    \(e^y⩾e^{e+1}>5>e+2⩾1+e-\sin ⁡ ⁡y\),矛盾,
    \(y<e+1\),即\(y-x<1\)
    此時\(\ln ⁡ (y-x)<0\),故\(B\)錯誤.
    \(y=1\),考慮\(x+\ln ⁡ x=e+\sin ⁡ ⁡1\)
    \(x⩽2\),則\(x+\ln ⁡x⩽2+\ln ⁡2<3<e+\dfrac{1}{2}<e+\sin ⁡1\),矛盾,
    \(x>2\),此時\(x-y>1\),此時\(\ln ⁡ (x-y)>0\),故\(A\)錯誤,
    故選:\(C\)

  2. 答案 \(D\)
    解析\(f(x)=(18-x)\ln ⁡ x\)
    \(f^{\prime}(x)=-\ln x+\dfrac{18}{x}-1\)\(x⩾8\)時單調遞減,
    \(f^{\prime}(8)=\dfrac{5}{4}-\ln 8<\dfrac{5}{4}-\ln e^2<0\)
    所以\(f'(x)<0\)\(x⩾8\)時恆成立,
    \(f(x)\)\(x⩾8\)時單調遞減,所以\(f(8)>f(9)>f(10)\)
    所以\(10\ln ⁡ 8>9\ln ⁡ 9>8\ln ⁡ 10\),故 \(8^{10}>9^9>10^8\)
    \(a>b>c\)
    故選:\(D\)
     

【C組---拓展題】

1.若 \(x+\dfrac{3}{2} y-2=e^x+3 \ln \dfrac{y}{2}\),其中\(x>2\),\(y>2\),則(  )
 A.\(e^x<y\) \(\qquad \qquad\) B.\(2x>y\) \(\qquad \qquad\) C. \(4 e^{\frac{x}{2}}>y\) \(\qquad \qquad\) D.\(2e^x>y\)
 

2.若實數\(a\),\(b\)滿足 \(2 \ln a+\ln (2 b) \geq \dfrac{a^2}{2}+4 b-2\),則(  )
 A.\(a+b=\sqrt{2}+\dfrac{1}{4}\)\(\qquad \qquad\) B.\(a-2b=\sqrt{2}-\dfrac{1}{4} ⁡\) \(\qquad \qquad\) C.\(a^2+b>3\) \(\qquad \qquad\) D.\(a^2-4b<1\)
 

參考答案

  1. 答案 \(D\)
    解析 因為 \(x+\dfrac{3}{2} y-2=e^x+3 \ln \dfrac{y}{2}\)
    所以 \(e^x-x=\dfrac{3}{2} y-2-3 \ln \dfrac{y}{2}=2\left(\dfrac{y}{2}-1-\ln \dfrac{y}{2}\right)+\dfrac{y}{2}-\ln \dfrac{y}{2}\)
    \(f(x)=x-1-\ln ⁡ x\),則 \(f^{\prime}(x)=1-\dfrac{1}{x}=\dfrac{x-1}{x}\)
    \(x>1\)時,\(f'(x)>0\)\(f(x)\)為增函式,
    所以\(f(x)>f(1)=0\)
    因為\(y>2\),所以 \(\dfrac{y}{2}-1-\ln \dfrac{y}{2}>0\)
    所以 \(e^x-x>\dfrac{y}{2}-\ln \dfrac{y}{2}=e^{\ln \dfrac{y}{2}}-\ln \dfrac{y}{2}\)\(x>2\)\(\ln \dfrac{y}{2}>0\)
    \(g(x)=e^x-x\),則\(g'(x)=e^x-1\)
    \(x>0\)時,\(g'(x)>0\)\(g(x)\)單調遞增,
    所以 \(\text { 以 } e^x-x>\dfrac{y}{2}-\ln \dfrac{y}{2}=e^{\ln \dfrac{y}{2}}-\ln \dfrac{y}{2}\),等價於 \(x>\ln \dfrac{y}{2}\)
    所以 \(e^x>\dfrac{y}{2}\),即\(2e^x>y\)
    故選:\(D\)

  2. 答案 \(A\)
    解析 根據題意,若實數\(a\),\(b\)滿足 \(2 \ln a+\ln (2 b) \geq \dfrac{a^2}{2}+4 b-2\)
    \(a>0\)\(b>0\)
    又由 \(\dfrac{a^2}{2}+4 b-2 \geq 2 \times \sqrt{\dfrac{a^2}{2} \times 4 b}-2=2 \sqrt{2 a^2 b}-2\),當且僅當\(a^2=8b\)時等號成立,
    則有 \(2 \ln a+\ln (2 b) \geq 2 \sqrt{2 a^2 b}-2\),變形可得 \(\ln \left(2 a^2 b\right)-2 \sqrt{2 a^2 b}+2 \geq 0\)
    \(g(x)=\ln x-2 \sqrt{x}+2\)
    則其導數 \(g^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{\sqrt{x}}=\dfrac{1-\sqrt{x}}{x}\)
    \(0<x≤1\)時,\(g'(x)≥0\),則\(g(x)\)在區間\((0,1]\)上為增函式,
    \(x≥1\)時,\(g'(x)≤0\),則\(g(x)\)在區間\([1,+∞)\)上為減函式,
    則有\(g(x)≤g(1)=0\)
    \(\ln \left(2 a^2 b\right)-2 \sqrt{2 a^2 b}+2 \geq 0\)
    \(g(2a^2 b)≥0\),必有\(2a^2 b=1\)
    \(a^2=8b\),所以\(a=\sqrt{2}\)\(b=\dfrac{1}{4} ⁡\)
    據此分析選項:對於\(A\)\(a+b=\sqrt{2}+\dfrac{1}{4} ⁡\)\(A\)正確;
    對於\(B\)\(a-2b=\sqrt{2}-\dfrac{1}{2} ⁡\)\(B\)錯誤;
    對於\(C\)\(a^2+b=\dfrac{9}{4}\)\(C\)錯誤;
    對於\(D\)\(a^2-4b=1\)\(D\)錯誤;
    故選:\(A\)