1. 程式人生 > 其它 >5.3.2(1) 導數與函式的極值

5.3.2(1) 導數與函式的極值

\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【基礎過關係列】高二數學同步精品講義與分層練習(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

選擇性第二冊同步鞏固,難度2顆星!

基礎知識

極值的概念


若在點\(x=a\)附近的左側\(f'(x)<0\),右側\(f'(x)>0\), 則\(a\)稱為函式\(y=f(x)\)的極小值點,\(f(a)\)稱為函式\(y=f(x)\)的極小值;
若在點\(x=b\)附近的左側\(f'(x)>0\)

,右側\(f'(x)<0\),則\(b\)稱為函式\(y=f(x)\)的極大值點,\(f(b)\)稱為函式\(y=f(x)\)的極大值.
極小值點、極大值點統稱為極值點,極大值和極小值統稱為極值.
解釋
① 把函式圖象看成一座“山脈”,極大值就是“山峰”,極小值就是“山谷”, 如下圖;
② 極值是“函式值\(y\)”,極值點是“自變數\(x\)值”,如下圖有極大值\(f(-1)\)\(f(1)\),極小值\(f(-2)\)\(f(2)\),極大值點\(-1\)\(1\),極小值點\(-2\)\(2\).

③ 極值反映了函式在某一點附近的大小情況,刻畫了函式的區域性性質;
④ 對於極值還有特別強調一下,看例題:
【例】
\(x_0\)是函式\(y=f(x)\)的極值點,則下列說法準確的是( )
 A. 必有\(f'(x_0 )=0\) \(\qquad \qquad \qquad \qquad\qquad \qquad\) B.\(f'(x_0 )\)不存在
 C. \(f'(x_0 )=0\)\(f'(x_0 )\)不存在 \(\qquad \qquad \qquad \qquad\) D. \(f'(x_0 )\)存在但可能不為\(0\)
解析 函式\(f(x)=x^3\)

\(f'(x)=3x^2\)\(f'(0)=0\)
\(x<0\)時,\(f'(x)>0\)
\(x>0\)時,\(f'(x)>0\)
故根據極值的定義,\(0\)不是函式\(f(x)=x^3\)的極值點,這個從函式圖象也很容易知道.
又如函式\(g(x)=|x|\)

\(x<0\)時,\(g'(x)=-1<0\); 當\(x>0\)時,\(g'(x)=1>0\)
所以\(g(x)\)\(x=0\)處取到極值,但在導數不存在;故選\(C\).
總結
① 若\(f(x)\)可導,且\(x_0\)\(y=f(x)\)的極值,則\(x_0\)\(f'(x)=0\)的解;
② 若\(x_0\)\(f'(x)=0\)的解,\(x_0\) 不一定是\(y=f(x)\)的極值點;
③ 定義很重要.
【例】判斷\(x=0\)是否\(f(x)= \dfrac{1}{3} x^3-x^2\)的極大值點.
\(\because f(x)= \dfrac{1}{3} x^3-x^2\)\(\therefore f'(x)=x^2-2x\)
\(x>0\)時,\(f'(x)<0\);當\(x<0\)時,\(f'(x)>0\)
所以\(x=0\)\(f(x)= \dfrac{1}{3} x^3-x^2\)的極大值點.
 

求函式的極值的方法

解方程\(f'(x)=0\) ,當\(f'(x_0)=0\)時:
(1) 如果在\(x_0\)附近的左側\(f'(x)>0\),右側\(f'(x)<0\),那麼\(f(x_0)\)是極大值;
(2) 如果在\(x_0\)附近的左側\(f'(x)<0\),右側 \(f'(x)>0\),那麼\(f(x_0)\)是極小值.
 

基本方法

【題型1】 極值的概念

【典題1】(多選)設函式\(f(x)\)的定義域為\(R\)\(x_0 (x_0≠0)\)\(f(x)\)的極大值點,以下結論錯誤的是(  )
 A.\(∀x∈R\)\(f(x)≤f(x_0)\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(-x_0\)\(f(-x)\)的極小值點
 C.\(-x_0\)\(-f(x)\)的極小值點 \(\qquad \qquad \qquad \qquad\) D.\(-x_0\)\(-f(-x)\)的極小值點
解析 \(A\)\(∀x∈R\)\(f(x)≤f(x_0)\),錯誤.\(x_0 (x_0≠0)\)\(f(x)\))的極大值點,並不是最大值點;
\(B\)\(-x_0\)\(f(-x)\)的極小值點,錯誤.\(f(-x)\)相當於\(f(x)\)關於\(y\)軸的對稱圖象,故\(-x_0\)應是\(f(-x)\)的極大值點;
\(C\)\(-x_0\)\(-f(x)\)的極小值點,錯誤.\(-f(x)\)相當於\(f(x)\)關於\(x\)軸的對稱圖象,故\(x_0\)應是\(-f(x)\)的極小值點.跟\(-x_0\)沒有關係;
\(D\)\(-x_0\)\(-f(-x)\)的極小值點,正確.\(-f(-x)\)相當於\(f(x)\)先關於\(y\)軸的對稱,再關於\(x\)軸的對稱圖象.故\(D\)正確.
故選:\(ABC\)
點撥 結合圖象分析.
 

【典題2】若函式 \(f(x)=x^3-\left(\dfrac{a}{2}+3\right) x^2+2 a x+3\)\(x=2\)處取得極小值,則實數\(a\)的取值範圍是(  )
 A.\((-∞,-6)\) \(\qquad \qquad \qquad\) B.\((-∞,6)\) \(\qquad \qquad \qquad\) C.\((6,+∞)\) \(\qquad \qquad \qquad\) D.\((-6,+∞)\)
解析 \(f(x)=x^3-\left(\dfrac{a}{2}+3\right) x^2+2 a x+3\)
\(f'(x)=3x^2-(a+6)x+2a\)
由題意得:\(f'(2)=0\),即\(12-2a-12+2a=0\)\(f'(2)\)恆為\(0\)
\(\because f(2)\)是極小值,\(\therefore x<2\)時,函式單調遞減,\(x>2\)時,函式單調遞增,
結合二次函式的性質\(f'(x)\)的對稱軸在\(x=2\)的左側,
\(\dfrac{a+6}{6}<2\),故\(a<6\)
\(△=(a+6)^2-24a=(a-6)^2>0\),故\(a<6\)
故選:\(B\)
點撥 本題依題意得\(f'(2)=0\),由於等式恆成立,求不出\(a\),則利用極值的概念求出\(a\)的取值範圍.
 

【鞏固練習】

1.已知函式\(y=f(x)\)的導函式的圖象如圖所示,則下列結論正確的是(  )

 A.\(-4\)是函式\(f(x)\)的極小值點 \(\qquad \qquad \qquad \qquad\) B.\(-1\)是函式\(f(x)\)的極小值點
 C.函式\(f(x)\)在區間\((-4,1)\)上單調遞減 \(\qquad \qquad\) D.函式\(f(x)\)在區間\((-4,-1)\)上先增後減
 

2.函式\(f(x)=4x^3-ax^2-2bx+2\)\(x=1\)處有極值,則\(a+b\)的值等於(  )
 A.\(9\) \(\qquad \qquad \qquad \qquad\) B.\(6\) \(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

3.已知函式\(f(x)=x^3+2ax^2+bx+a^2\)\(x=1\)處的極小值為\(6\),則數對\((a,b)\)為(  )
  A.\((-2,5)\) \(\qquad \qquad\) B.\((-19,4)\) \(\qquad \qquad\) C.\((4,-19)\) \(\qquad \qquad\) D.\((-2,5)\)\((4,-19)\)
 

4.(多選)已知函式\(f(x)= \dfrac{1}{3} x^3+x^2-2ax+1\),當實數\(a\)為下列(  )的值時,函式\(f(x)\)\((1,2)\)上有極值.
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\)\(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

參考答案

  1. 答案 \(A\)
    解析 結合導函式的圖象,可知\(f(x)\)\((-∞,-4)\)單調遞減,在\((-4,+∞)\)單調遞增,
    所以\(-4\)是函式\(f(x)\)的極小值點,故\(A\)正確;
    \(-1\)不是\(f(x)\)的極值點,故\(B\)錯誤;
    函式\(f(x)\)在區間\((-4,1)\)上單調遞增,故\(C\)錯誤;
    函式\(f(x)\)在區間\((-4,-1)\)上單調遞增,故\(D\)錯誤;
    故選:\(A\)

  2. 答案 \(B\)
    解析 函式\(f(x)=4x^3-ax^2-2bx+2\)\(x=1\)處有極值,可知\(f'(1)=0\)
    \(f'(x)=12x^2-2ax-2b\),故\(12-2a-2b=0\) ,故\(a+b=6\)
    故選:\(B\)

  3. 答案 \(C\)
    解析\(f(x)=x^3+2ax^2+bx+a^2\),得\(f'(x)=3x^2+4ax+b\)
    \(\because f(x)\)\(x=1\)處的極小值為\(6\)\(\therefore f'(1)=0\)\(f(1)=6\)
    \(\therefore 3+4a+b=0\)\(1+2a+b+a^2=6\)
    \(\therefore a=-2\)\(b=5\)\(a=4\)\(b=-19\)
    經檢驗當\(a=-2\)\(b=5\)時,\(f(x)\)\(x=1\)處取不到極小值\(6\)
    \(\therefore a=4\)\(b=-19\)\(\therefore\)數對\((a,b)\)\((4,-19)\)
    故選:\(C\)

  4. 答案 \(BC\)
    解析 \(f'(x)=x^2+2x-2a\)
    因為函式\(f(x)\)\((1,2)\)上有極值,所以\(f'(x)=0\)\((1,2)\)上有根,
    所以\(y=f'(x)\)\((1,2)\)上有變號零點,
    又因為\(f'(x)=x^2+2x-2a\),在\((1,2)\)上單調遞增,
    所以\(\left\{\begin{array}{l} f^{\prime}(1)=3-2 a<0 \\ f^{\prime}(2)=8-2 a>0 \end{array}\right.\),解得\(\dfrac{3}{2}<a<4\)
    故選:\(BC\)
     

【題型2】 不含參函式的極值

【典題1】 已知曲線\(f(x)=ax^3-bx^2+2\)在點\((1,f(1))\)處的切線方程為\(y=1\)
  (1)求\(a\)\(b\)的值;\(\qquad \qquad\) (2)求\(f(x)\)的極值.
解析 (1)由函式的解析式可得\(f'(x)=3ax^2-2bx\)
由切線方程可知切點座標為\((1,1)\),切線的斜率為\(0\)
從而有 \(\left\{\begin{array}{l} f(1)=a-b+2=0 \\ f^{\prime}(1)=3 a-2 b=0 \end{array}\right.\),求解方程組可得 \(\left\{\begin{array}{l} a=2 \\ b=3 \end{array}\right.\)
\(a=2\)\(b=3\)
(2)由題意可得\(f(x)=2x^3-3x^2+2\)\(f'(x)=6x^2-6x\)
\(x∈(-∞,0)\)時,\(f'(x)>0\)\(f(x)\)單調遞增,
\(x∈(0,1)\)時,\(f'(x)<0\)\(f(x)\)單調遞減,
\(x∈(1,+∞)\)時,\(f'(x)>0\)\(f(x)\)單調遞增,
故函式的極大值為\(f(0)=2\),函式的極小值為\(f(1)=1\)

點撥 求函式極值先求函式單調性,解題步驟與思路差不多;藉助導函式的“穿線圖”更好得到結論.
 

【鞏固練習】

1.下列函式中,不存在極值點的是(  )
 A.\(y=x+ \dfrac{1}{x}\) \(\qquad \qquad\) B. \(y=2^{|x|}\) \(\qquad \qquad\) C.\(y=x⋅\ln ⁡x\) \(\qquad \qquad\) D.\(y=-2x^3-x\)
 

2.函式\(y=1+3x-x^3\)有(  )
 A.極小值\(-1\),極大值\(1\) \(\qquad \qquad \qquad \qquad\) B.極小值\(-1\),極大值\(3\)
 C.極小值\(-2\),極大值\(2\) \(\qquad \qquad \qquad \qquad\) D.極小值\(2\),極大值\(3\)
 

3.函式\(f(x)=\cos⁡ 2x+\sin ⁡ ⁡x\)\(x \in\left(0, \dfrac{\pi}{2}\right)\)的極值點為\(x_0\),則\(\tan⁡ x_0\)的值為(  )
 A.\(\dfrac{\sqrt{15}}{15}\) \(\qquad \qquad \qquad \qquad\) B.\(\sqrt{15}\) \(\qquad \qquad \qquad \qquad\) C.\(\sqrt{3}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{\sqrt{3}}{3}\)
 

4.已知函式\(f(x)=a\ln ⁡x- \dfrac{1}{2} x^2\)\((a∈R)\)\(x=1\)處的切線與直線\(y=x+1\)平行.
  (1)求實數a的值;\(\qquad \qquad\) (2)求函式\(f(x)\)的極值.
 
 

參考答案

  1. 答案 \(D\)
    解析 \(y=x+ \dfrac{1}{x}\)\(x=-1\)時,函式取得極大值,\(x=1\)時,函式取得極小值,所以\(A\)不正確;
    \(y=2^{|x|}\)是偶函式,\(x=0\)時,函式取得極小值,所以\(B\)不正確;
    \(y=x⋅\ln ⁡x\)可得\(y'=\ln ⁡x+1\)\(x>\dfrac{1}{e}\)時,\(y'>0\),函式是增函式,
    \(x \in\left(0, \dfrac{1}{e}\right)\)時,\(y'<0\),函式是減函式,\(x=\dfrac{1}{e}\)時,函式取得極小值,所以\(C\)不正確.
    \(y=-2x^3-x\),可得\(y'=-6x^2-1<0\)恆成立,函式是減函式,
    所以函式沒有極小值,所以\(D\)正確.
    故選:\(D\)

  2. 答案 \(B\)
    解析 \(y'=3-3x^2\)
    \(y'=0\),解得\(x=±1\)
    \(x∈(-∞,-1)\)\((1,+∞)\)時,\(y'<0\)\(x∈(-1,1)\)時,\(y'>0\)
    \(\therefore\)函式\(y=1+3x-x^3\)有在\((-∞,-1)\)\((1,+∞)\)上遞減,在\((-1,1)\)遞增,
    \(\therefore x=1\),函式取得極大值\(1+3×1-1^3=3\)
    \(x=-1\)時,函式取得極小值\(1+3×(-1)-(-1)^3=-1\)
    故選:\(B\)

  3. 答案 \(A\)
    解析 函式\(f(x)=\cos⁡ 2x+\sin ⁡ ⁡x\)\(x \in\left(0, \dfrac{\pi}{2}\right)\)
    所以 \(f^{\prime}(x)=-2 \sin 2 x+\cos x=\cos x(1-4 \sin x)\)
    \(f'(x)=0\)\(\cos⁡ x(1-4\sin ⁡ ⁡x)=0\)
    因為\(x \in\left(0, \dfrac{\pi}{2}\right)\),所以\(\cos⁡ x≠0\)
    所以\(1-4\sin ⁡ ⁡x=0\),即\(\sin ⁡ ⁡x= \dfrac{1}{4}\)
    因為函式\(f(x)=\cos⁡ 2x+\sin ⁡ ⁡x\)\(x \in\left(0, \dfrac{\pi}{2}\right)\)的極值點為\(x_0\)
    所以\(\sin ⁡ ⁡x_0= \dfrac{1}{4}\)\(\cos x_0=\dfrac{\sqrt{15}}{4}\)\(\therefore \tan x_0=\dfrac{\sqrt{15}}{15}\)
    故選:\(A\)

  4. 答案 (1) \(a=2\);(2) 極大值為\(\ln ⁡2-1\),無極小值.
    解析 (1)由題意可知,\(f'(1)=1\)
    \(\because f^{\prime}(x)=\dfrac{a}{x}-x\)\(\therefore f'(1)=a-1=1\)\(\therefore a=2\)
    (2) \(\because f^{\prime}(x)=\dfrac{2}{x}-x=\dfrac{2-x^2}{x}\)
    \(\therefore f'(x)>0⇒0<x<\sqrt{2}\)\(f'(x)<0⇒x>\sqrt{2}\)
    即函式\(f(x)\)\((0,\sqrt{2})\)上單調遞增,在\((\sqrt{2},+∞)\)上單調遞減,
    故函式\(f(x)\)的極大值為\(f(\sqrt{2})=2\ln ⁡\sqrt{2}-1=\ln ⁡2-1\),無極小值.
     

【題型3】含參函式的極值

【典題1】討論函式\(f(x)=e^x-2ax-a\)的極值.
解析 \(f'(x)=e^x-2a\)
\(a≤0\)時,\(f'(x)= e^x-2a>0\)\(f(x)\)\(R\)上為單調增函式,無極值,
\(a>0\)時,
\(f'(x)= e^x-2a>0\)\(x>\ln (2a)\)\(f(x)\)\((\ln (2a),+∞)\)上為單調增函式,
\(f'(x)= e^x-2a<0\)\(x<\ln (2a)\)\(f(x)\)\((-∞,\ln (2a))\)上為單調減函式,
所以 \(f_{\text {極小值 }}=f(\ln (2 a))=a-2 a \ln (2 a)\),無極大值.
綜上所述:當\(a≤0\)時,無極值,
\(a>0\)時, \(f_{\text {極小值 }}=a-2 a \ln (2 a)\),無極大值.
 

【鞏固練習】

1.討論\(f(x)=x^3-ax^2+2\)的極值.
 
 

2.討論\(f(x)=\ln x+ \dfrac{1}{2} x^2+ax(a∈R)\)的極值點的個數.
 
 

參考答案

  1. 答案\(a≤0\)時,\(f(x)\)無極值;當\(a>0\)時,極小值\(-\dfrac{4 a^3}{27}+2\),無極大值.
    解析 定義域\(x∈(0,+∞)\)\(f'(x)=3x^2-2ax=x(3x-2a)\)
    \(a≤0\)時,\(f'(x)≥0\)\(f(x)\)\((0,+∞)\)上單增,無極值,
    \(a>0\)時, \(f^{\prime}(x)>0 \Rightarrow x>\dfrac{2 a}{3}\)
    \(\therefore f(x)\)單減區間是\(\left(0, \dfrac{2 a}{3}\right)\),單增區間是\(\left(\dfrac{2 a}{3},+\infty\right)\)
    所以 \(f(x)_{\text {極小 }}=f\left(\dfrac{2 a}{3}\right)=-\dfrac{4 a^3}{27}+2\),無極大值.
    綜上所述,當\(a≤0\)時,\(f(x)\)無極值;當\(a>0\)時,極小值\(-\dfrac{4 a^3}{27}+2\),無極大值.

  2. 答案\(a≥-2\)時,函式\(f(x)\)無極值點;當\(a<-2\)時,\(f(x)\)有兩個極值點.
    解析 由題意得: \(f^{\prime}(x)=\dfrac{1}{x}+x+a=\dfrac{x^2+a x+1}{x}(x>0)\)
    \(f'(x)=0\),即\(x^2+ax+1=0\)\(△=a^2-4\)
    ①當\(△=a^2-4≤0\),即\(-2≤a≤2\)時,
    \(x^2+ax+1≥0\)對任意的\(x>0\)恆成立,
    \(f^{\prime}(x)=\dfrac{x^2+a x+1}{x} \geq 0\)對任意\(x>0\)恆成立,此時\(f(x)\)沒有極值點;
    ②當\(△=a^2-4>0\),即\(a<-2\)\(a>2\)時,
    \(a<-2\),設方程的兩根不同實根\(x_1\)\(x_2\)
    不妨設\(x_1<x_2\)
    \(x_1+x_2=-a\)\(x_1 x_2=1>0\),故\(x_2>x_1>0\)
    \(0<x<x_1\)\(x>x_2\)時,\(f'(x)>0\)
    \(x_1<x<x_2\)時,\(f'(x)<0\)
    \(x_1\)\(x_2\)是函式\(f(x)\)的兩個極值點.
    \(a>2\),設方程\(x^2+ax+1=0\)的兩個不同的實根\(x_1\)\(x_2\)
    \(x_1+x_2=-a<0\)\(x_1 x_2=1\),故\(x_1<0\)\(x_2<0\)
    所以當\(x>0\)時,\(f'(x)>0\),故函式\(f(x)\)沒有極值點,
    綜上當\(a≥-2\)時,函式\(f(x)\)無極值點;當\(a<-2\)時,\(f(x)\)有兩個極值點.
     

分層練習

【A組---基礎題】

1.已知函式\(f(x)\)的導函式為\(f'(x)\),函式\(g(x)=(x-1)f'(x)\)的圖象如圖所示,則下列結論正確的是(  )

 A.\(f(x)\)\((-∞,-2)\)\((1,2)\)上為減函式 \(\qquad \qquad \qquad \qquad\) B.\(f(x)\)\((-2,1)\)\((2,+∞)\)上為增函式
 C.\(f(x)\)的極小值為\(f(-2)\),極大值為\(f(2)\) \(\qquad \qquad \qquad \qquad\) D.\(f(x)\)的極大值為\(f(-2)\),極小值為\(f(2)\)
 

2.函式\(f(x)= \dfrac{1}{2} x^2+\ln ⁡x-2x\)的極值點的個數是(  )
 A.\(0\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.無數個
 

3.若函式\(f(x)= \dfrac{1}{2} x^2-x+a\ln x\)有兩個不同的極值點,則實數\(a\)的取值範圍是(  )
 A.\(a> \dfrac{1}{4}\) \(\qquad \qquad \qquad\) B.\(- \dfrac{1}{4}<a<0\) \(\qquad \qquad \qquad\) C.\(a< \dfrac{1}{4}\) \(\qquad \qquad \qquad\) D.\(0<a< \dfrac{1}{4}\)
 

4.已知函式\(f(x)=x\ln ⁡x+x^2\),且\(x_0\)是函式\(f(x)\)的極值點.給出以下幾個問題:
\(x_0> \dfrac{1}{e}\);②\(0<x_0< \dfrac{1}{e}\);③\(f(x_0 )+x_0<0\);④\(f(x_0 )+x_0>0\)
其中正確的命題是(  )
 A.①③ \(\qquad \qquad \qquad \qquad\) B.①④ \(\qquad \qquad \qquad \qquad\) C.②③ \(\qquad \qquad \qquad \qquad\) D.②④
 

5.已知函式\(f(x)=x^3+3ax^2+1(a<0)\)\(f(x)\)極小值點為\(x_0\),若\(f(x_1 )=f(x_0 )\)\(x_1≠x_0\),則\(x_1⋅f(x_1+x_0 )\)的最小值為(  )
 A.\(- \dfrac{3}{4}\) \(\qquad \qquad \qquad \qquad\) B. \(- \dfrac{3}{8}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{3}{8}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{3}{4}\)
 

6.若函式\(f(x)=m\cdot e^x-x^2+2x(m<0)\)\((0,1)\)上有極值點,則\(m\)的取值範圍為\(\underline{\quad \quad}\)
 

7.設\(x_1\)\(x_2\)是函式\(f(x)=x^3+2ax^2+x+1\)的兩個極值點.若\(x_2-x_1=2\),則\(a^2=\)\(\underline{\quad \quad}\)
 

8.設函式\(f(x)=2x^3+3x^2+ax+b\),曲線\(y=f(x)\)在點\((0,f(0))\)處的切線方程為\(y=-12x+1\)
  (1)求\(f(x)\)的解析式;\(\qquad \qquad\) (2)求\(f(x)\)的極值.
 
 

9.設\(a\)為實數,函式\(f(x)= \dfrac{1}{3} x^3- \dfrac{1}{2}(a-1)x^2-ax(x∈R)\)
  (1)當\(a=1\)時,求\(f(x)\)的單調區間;
  (2)求\(f(x)\)\(R\)上的極大值與極小值.
 
 

參考答案

  1. 答案 \(D\)
    解析\(x∈(-∞,-2)\)時,\(x-1<0\),由圖象可得\(g(x)=(x-1)f'(x)<0\)
    \(f'(x)>0\)\(f(x)\)為增函式;
    \(x∈(-2,1)\)時,\(x-1<0\),由圖象可得\(g(x)=(x-1)f'(x)>0\)
    \(f'(x)<0\)\(f(x)\)為減函式;
    \(x∈(1,2)\)時,\(x-1>0\),由圖象可得\(g(x)=(x-1)f'(x)<0\)
    \(f'(x)<0\)\(f(x)\)為減函式;
    \(x∈(2,+∞)\)時,\(x-1>0\),由圖象可得\(g(x)=(x-1)f'(x)>0\)
    \(f'(x)>0\)\(f(x)\)為增函式,
    所以\(f(x)\)的極大值為\(f(-2)\),極小值為\(f(2)\)
    結合選項可知,只有選項\(D\)正確.
    故選:\(D\)

  2. 答案 \(A\)
    解析 \(f^{\prime}(x)=x+\dfrac{1}{x}-2=\dfrac{(x-1)^2}{x} \geqslant 0\)
    故原函式單調遞增,\(f(x)\)無極值點.
    故選:\(A\)

  3. 答案 \(D\)
    解析 因為\(f(x)= \dfrac{1}{2} x^2-x+a\ln x\)有兩個不同的極值點,
    所以\(f^{\prime}(x)=x-1+\dfrac{a}{x}=\dfrac{x^2-x+a}{x}=0\)\((0,+∞)\)\(2\)個不同的零點,
    所以\(x^2-x+a=0\)\((0,+∞)\)\(2\)個不同的零點,
    所以\(\left\{\begin{array}{l} \triangle=1-4 a>0 \\ a>0 \end{array}\right.\),解可得,\(0<a< \dfrac{1}{4}\)
    故選:\(D\)

  4. 答案 \(C\)
    解析\(f(x)\)的定義域為\(x>0\)\(f'(x)=\ln ⁡x+2x+1\)
    所以有$f'(x_0 )=\ln ⁡x_0+2x_0+1=$0,
    所以有\(2x_0=-(\ln ⁡x_0+1)>0\),即\(\ln ⁡x_0<-1\)
    \(\ln x_0<\ln e^{-1}\),所以有\(0<x_0< \dfrac{1}{e}\);故①錯誤,②正確;
    \(f(x_0 )+x_0=x_0 \ln ⁡x_0+x_0^2+x_0=x_0 (\ln ⁡x_0+x_0+1)\)
    因為\(2x_0=-(\ln ⁡x_0+1)\)
    所以有\(f(x_0 )+x_0=x_0 \ln ⁡x_0+x_0^2+x_0=x_0 (\ln ⁡x_0+x_0+1)=-x_0^2<0\)
    故③正確,④錯誤.
    故選:\(C\)

  5. 答案 \(B\)
    解析 \(f'(x)=3x^2+6ax=3x(x+2a)\)
    \(\because a<0\)
    \(x>-2a\)\(x<0\)時,\(f'(x)>0\),函式單調遞增,
    \(0<x<-2a\)時,\(f'(x)<0\),函式單調遞減,
    故極小值點為\(x_0=-2a\)
    \(f(x_1 )=f(x_0 )=1+4a^3\)可得\(x_1=a\)
    \(x_1⋅f(x_1+x_0 )=af(-a)=a(2a^3+1)=2a^4+a\)
    \(g(a)=2a^4+a(a<0)\)\(g'(a)=8a^3+1\)
    \(a \in\left(-\infty,-\dfrac{1}{2}\right)\)\(g'(a)<0\); \(a \in\left(-\dfrac{1}{2},+\infty\right)\)\(g'(a)>0\)
    所以\(g(a)\)\(\left(-\infty,-\dfrac{1}{2}\right)\)上單調遞減,在\(\left(-\dfrac{1}{2},+\infty\right)\)上單調遞增,
    \(g(a)_{\min }=g\left(-\dfrac{1}{2}\right)=-\dfrac{3}{8}\)
    故選:\(B\)

  6. 答案 \((-2,0)\)
    解析 \(f'(x)=m\cdot e^x-2x+2(m<0)\)
    所以\(f'(x)\)\((0,1)\)上為減函式,
    所以\(\left\{\begin{array}{l} f^{\prime}(0)=m+2>0 \\ f^{\prime}(1)=m e<0 \end{array}\right.\),解得\(-2<m<0\)
    故答案為:\((-2,0)\)

  7. 答案 \(3\)
    解析 \(\because\)函式\(f(x)=x^3+2ax^2+x+1\)\(\therefore f'(x)=3x^2+4ax+1\)
    \(x_1\)\(x_2\)是函式\(f(x)=x^3+2ax^2+x+1\)的兩個極值點,
    \(x_1\)\(x_2\)是方程\(3x^2+4ax+1=0\)的兩根,
    \(x_1+x_2=-\dfrac{4 a}{3}\)\(x_1 \cdot x_2=\dfrac{1}{3}\)
    \(x_2-x_1=2\),則\((x_1-x_2 )^2=(x_1+x_2 )^2-4x_1 x_2=4\)
    \(\dfrac{16 a^2}{9}-\dfrac{4}{3}=4\),則\(a^2=3\).

  8. 答案 (1)\(y=2x^3+3x^2-12x+1\);(2) 極大值\(21\), 極小值\(-6\).
    解析 (1)\(f'(x)=6x^2+6x+a\)\(k_{\text {切 }}=f^{\prime}(0)=a\)
    又因為切線方程為\(y=-12x+1\)
    所以 \(k_{\text {切 }}=-12\),得\(a=-12\)
    因為切點在切線上也在曲線上,
    所以\(\left\{\begin{array}{l} f(0)=-12 \times 0+1=1 \\ f(0)=b \end{array}\right.\),所以\(b=1\)
    所以\(f(x)\)的解析式為\(y=2x^3+3x^2-12x+1\)
    (2)\(f(x)\)定義域為\(R\)\(f'(x)=6x^2+6x-12\)
    \(f'(x)=0\)得,\(x=-2\)\(1\)
    所以在\((-∞,-2)\)\((1,+∞)\)上單調遞增,在\((-2,1)\)上單調遞減,
    所以\(f(x)_{\text {極大值 }}=f(-2)=21\)\(f(x)_{\text {極小植 }}=f(1)=-6\)

  9. 答案 (1) 在\((-∞,-1)\)\((1,+∞)\)上單調遞增,在\((-1,1)\)上單調遞減;
    (2) 當\(a=-1\)時,無極值;當\(a>-1\)時,極大值為\(\dfrac{1}{2} a+\dfrac{1}{6}\),極小值為\(-\dfrac{1}{6} a^3+\dfrac{3}{2} a^2\)
    \(a<-1\)時,極小值為\(\dfrac{1}{2} a+\dfrac{1}{6}\),極大值為\(-\dfrac{1}{6} a^3+\dfrac{3}{2} a^2\)
    解析 (1)當\(a=1\)時,\(f(x)= \dfrac{1}{3} x^3-x\)\(\therefore f'(x)=x^2-1\)
    \(f'(x)=0\),解得\(x=1\),或\(x=-1\)
    \(f'(x)>0\)時,即\(x>1\),或\(x<-1\)時,函式為增函式,
    \(f'(x)<0\)時,即\(-1<x<1\),函式為減函式,
    \(\therefore f(x)\)\(在(-∞,-1)\)\((1,+∞)\)上單調遞增,在\((-1,1)\)上單調遞減;
    (2) \(f'(x)=x^2-(a-1)x-a=(x-a)(x+1)\)
    \(f'(x)=0\),解得\(x=-1\)\(x=a\)
    ①當\(a=-1\)時,\(f'(x)⩾0\)恆成立,\(\therefore f(x)\)單調遞增,函式無極值,
    ②當\(a>-1\)時,
    \(f'(x)>0\)時,即\(x>a\),或\(x<-1\)時,函式為增函式,
    \(f'(x)<0\)時,即\(-1<x<a\),函式為減函式,
    \(\therefore\)\(x=-1\)時,函式有極大值,極大值為\(f(-1)=-\dfrac{1}{3}-\dfrac{1}{2}(a-1)+a=\dfrac{1}{2} a+\dfrac{1}{6}\)
    \(x=a\)時,函式有極小值,極小值為\(f(a)=\dfrac{1}{3} a^3-\dfrac{1}{2}(a-1) a^2+a^2=-\dfrac{1}{6} a^3+\dfrac{3}{2} a^2\)
    ③當\(a<-1\)時,
    \(f'(x)>0\)時,即\(x>-1\),或\(x<a\)時,函式為增函式,
    \(f'(x)<0\)時,即\(a<x<-1\),函式為減函式,
    \(\therefore\)\(x=-1\)時,函式有極小值,極小值為\(f(-1)=\dfrac{1}{2} a+\dfrac{1}{6}\)
    \(x=a\)時,函式有極大值,極大值為\(f(a)=-\dfrac{1}{6} a^3+\dfrac{3}{2} a^2\)
    綜上所述,當\(a=-1\)時,無極值;
    \(a>-1\)時,極大值為\(\dfrac{1}{2} a+\dfrac{1}{6}\),極小值為\(-\dfrac{1}{6} a^3+\dfrac{3}{2} a^2\)
    \(a<-1\)時,極小值為\(\dfrac{1}{2} a+\dfrac{1}{6}\),極大值為 \(-\dfrac{1}{6} a^3+\dfrac{3}{2} a^2\)
     

【B組---提高題】

1.(多選)如圖,已知直線\(y=kx+m\)與曲線\(y=f(x)\)相切於兩點,則\(F(x)=f(x)-kx\)有(  )

 A.\(1\)個極大值點,\(2\)個極小值點 \(\qquad \qquad \qquad \qquad\) B.\(2\)個零點 \(\qquad \qquad \qquad \qquad\)
 C.\(0\)個零點 \(\qquad \qquad \qquad \qquad \qquad \qquad \qquad\) D.\(2\)個極小值點,無極大值點
 

2.已知函式\(f(x)=e^x-a\sin ⁡ x\)在區間 \(\left(0, \dfrac{\pi}{3}\right)\)上有極值,則實數\(a\)的取值範圍是\(\underline{\quad \quad}\) .
 

3.討論函式\(f(x)=x\ln x- \dfrac{1}{2} x^2+(a-1)x(a∈R)\)的極值點的個數.
 
 

參考答案

  1. 答案 \(AC\)
    解析 由原圖可知,\(k<0\)\(m>0\),設原圖中的兩切點橫座標為\(a\)\(b\)
    再在同一座標系中做出\(y=f(x)\)\(y=kx\)的圖象如圖:
    由圖可知,\(y=f(x)\)\(y=kx\)沒有公共點,
    故函式\(F(x)\)沒有零點.
    直線\(x=n\)\(y=f(x)\)\(y=kx\)分別交於點\(A\)\(B\)
    \(F(x)\)的函式值可以理解為線段\(AB\)長度;
    由圖可知:當\(x∈(-∞,a)\)時,\(F(x)\)單調遞減;當\(x∈(a,c)\)\(F(x)\)單調遞增;
    \(x∈(c,b)\)時,\(F(x)\)單調遞減;當\(x∈(b,+∞)\)時,\(F(x)\)單調遞增.
    \(a\)\(b\)是函式\(F(x)\)的極小值點,\(c\)\(F(x)\))的極大值點.
    故選:\(AC\)

  2. 答案 \(\left(1,2 e^{\frac{\pi}{3}}\right)\)
    解析 \(f(x)=e^x-\operatorname{asin} x\)\(x \in\left(0, \dfrac{\pi}{3}\right)\)
    \(f'(x)=e^x-a\cos⁡ x\)
    由題意得\(e^x-a\cos⁡ x=0\)\(\left(0, \dfrac{\pi}{3}\right)\)上有解,
    \(a=\dfrac{e^x}{\cos x}\)\(\left(0, \dfrac{\pi}{3}\right)\)上有解,
    \(a=\dfrac{e^x}{\cos x}\)\(x \in\left(0, \dfrac{\pi}{3}\right)\)
    \(g^{\prime}(x)=\dfrac{e^x(\sin x+\cos x)}{\cos ^2 x}\)
    \(x \in\left(0, \dfrac{\pi}{3}\right)\)時,\(g'(x)>0\)\(g(x)\)遞增,
    \(g(0)=1\)\(g\left(\dfrac{\pi}{3}\right)=2 e^{\frac{\pi}{3}}\),故 \(1<a<2 e^{\frac{\pi}{3}}\).

  3. 答案\(a≤1\)時,\(f(x)\)沒有極值點;當\(a>1\)時,\(f(x)\)\(2\)個極值點.
    解析 \(f'(x)=\ln x-x+a\)\(f^{\prime \prime}(x)=\dfrac{1}{x}-1=\dfrac{1-x}{x}\)
    \(x∈(0,1)\)時,\(f'' (x)>0\)\(f'(x)\)單調遞增;
    \(x∈(1,+∞)\)時,\(f'' (x)<0\)\(f'(x)\)單調遞減,
    所以當\(x=1\)時,\(f'(x)\)有極大值,\(f'(1)=a-1\)
    \(a≤1\)時,\(f'(1)≤0\)
    所以\(f(x)\)\((0,+∞)\)上單調遞減,此時\(f(x)\)無極值,
    \(a>1\)時,\(f'(1)=a-1>0\)
    \(f^{\prime}\left[\left(\dfrac{1}{e}\right)^{a+1}\right]=\ln \left(\dfrac{1}{e}\right)^{a+1}-\left(\dfrac{1}{e}\right)^{a+1}+a\)\(=-a-1-\left(\dfrac{1}{e}\right)^{a+1}+a=-1-\left(\dfrac{1}{e}\right)^{a+1}<0\)
    易證\(x>1\)時,\(e^x>2x\)
    所以\(a>1\)\(f'(e^a)=2a-e^a<0\)
    故存在\(x_1\)\(x_2\)滿足\(0<( \dfrac{1}{e})^{a+1}<x_1<1<x_2<e^a\)\(f'(x_1)=f'(x_2)=0\)
    \(x∈(0,x_1)\)時,\(f(x)\)單調遞減,當\(x∈(x_1,x_2)\)時,\(f(x)\)單調遞增,
    \(x∈(x_2,+∞)\)時,\(f(x)\)單調遞減,
    所以\(f(x)\)\(x=x_1\)處有極小值,在\(x=x_2\)處有極大值.
    綜上所述,當\(a≤1\)時,\(f(x)\)沒有極值點;當\(a>1\)時,\(f(x)\)\(2\)個極值點.
     

【C組---拓展題】

1.已知函式 \(f(x)=\dfrac{e^x}{x}+k(\ln x-x)\),若\(x=1\)是函式\(f(x)\)的唯一極值點,則實數\(k\)的取值範圍是\(\underline{\quad \quad}\)
 

參考答案

  1. 答案\((-∞,e]\)
    解析 \(\because\)函式 \(f(x)=\dfrac{e^x}{x}+k(\ln x-x)\)的定義域是\((0,+∞)\)
    \(\therefore f^{\prime}(x)=\dfrac{e^x(x-1)}{x^2}+\dfrac{k(1-x)}{x}=\dfrac{\left(e^x-k x\right)(x-1)}{x^2}\)
    \(x=1\)是函式\(f(x)\)的唯一一個極值點,
    \(\therefore x=1\)是導函式\(f'(x)=0\)的唯一根,
    \(\therefore e^x-kx=0\)\((0,+∞)\)無變號零點,
    \(g(x)=e^x-kx\),則\(g'(x)=e^x-k\)
    \(k≤0\)時,\(g'(x)>0\)恆成立,\(g(x)\)\((0,+∞)\)時單調遞增,
    \(g(x)\)的最小值為\(g(0)=1\)\(g(x)=0\)無解,
    \(k>0\)時,\(g'(x)=0\)有解,為:\(x=\ln k\)
    \(0<x<\ln k\)時,\(g'(x)<0\)\(g(x)\)單調遞減,
    \(\ln k<x\)時,\(g'(x)>0\)\(g(x)\)單調遞增,
    \(\therefore g(x)\)的最小值為\(g(\ln k)=k-k\ln k\)
    \(\therefore k-k\ln k>0\)\(\therefore k<e\)
    畫出函式\(y=e^x\)\(y=ex\)的圖象,如圖示:

    \(y=e^x\)\(y=ex\)圖象,它們切於\((1,e)\)
    綜上所述\(k≤e\)
    故答案為:\((-∞,e]\)