1. 程式人生 > 其它 >5.3.2(2) 導數與函式的最值

5.3.2(2) 導數與函式的最值

\({\color{Red}{歡迎到學科網下載資料學習 }}\)
[ 【基礎過關係列】高二數學同步精品講義與分層練習(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟貴哥學數學,so \quad easy!}}\)

選擇性第二冊同步鞏固,難度2顆星!

基礎知識

函式\(y=f(x)\)\([a,b]\)上的最大值與最小值的步驟
(1)求函式\(y=f(x)\)\((a ,b)\)內的極值;
(2)將函式\(y=f(x)\)的各極值與端點處的函式值\(f(a)\)\(f(b)\)比較,其中最大的一個是最大值,最小的一個是最小值.
解釋


(1) 極大值不一定是最大值,極小值不一定是最小值.
(2) 一般地,如果在區間\([a,b]\)上函式\(y=f(x)\)的圖象是一條連續不斷的曲線,那麼它必有最大值和最小值.
 

【例】 如下圖,可知函式\(y=f(x)\)在區間\([a,b]\)上的極大值為\(f(x_1 )\)\(f(x_3 )\);極小值為\(f(x_2 )\)\(f(x_4 )\);最大值為\(f(b)\),最小值為\(f(x_4 )\).

 

基本方法

【題型1】 求函式的最值

【典題1】\(a∈R\),函式\(f(x)=x^3-x^2-x+a\)
  (1)求\(f(x)\)的極值;\(\qquad \qquad\)

(2)若\(x∈[-1,2]\),求函式\(f(x)\)的值域.
解析 (1) \(f'(x)=3x^2-2x-1\),若\(f'(x)=0\),則\(x=-\dfrac{1}{3}\)\(1\)
\(x\)變化時,\(f'(x)\)\(f(x)\)變化情況如下表:

\(x\) \(\left(-\infty,-\dfrac{1}{3}\right)\) \(-\dfrac{1}{3}\) \(\left(-\dfrac{1}{3}, 1\right)\) \(1\) \((1,+∞)\)
\(f'(x)\) \(+\) \(0\) \(-\) \(0\) \(+\)
\(f(x)\) \(\uparrow\) 極大值 \(\downarrow\) 極小值 \(\uparrow\)

所以\(f(x)\)的極大值是\(f\left(-\dfrac{1}{3}\right)=\dfrac{5}{27}+a\),極小值是\(f(1)=a-1\)
(2)因為\(x∈\left[-1,2\right]\),由(1)知, \(f\left(-\dfrac{1}{3}\right)=\dfrac{5}{27}+a\)
\(f(1)=a-1\)\(f(-1)=a-1\)\(f(2)=a+2\)
\(f(x)\)的值域為\(\left[a-1,a+2\right]\)
點撥 函式\(y=f(x)\)\(\left[a,b\right]\)上的最大值與最小值的步驟
(1)求函式\(y=f(x)\)\((a ,b)\)內的極值;
(2)將函式\(y=f(x)\)的各極值與端點處的函式值\(f(a)\)\(f(b)\)比較,其中最大的一個是最大值,最小的一個是最小值.
 

【典題2】 已知函式\(f(x)=e^x (x-a-1)\)
  (1)當\(a=0\)時,求曲線\(y=f(x)\)\((0,f(0))\)處的切線方程;
  (2)求\(f(x)\)的單調性;
  (3)求函式\(f(x)\)\(\left[0,1\right]\)上的最小值.
解析 (1)當\(a=0\)時,\(f(x)=e^x (x-1)\)\(f'(x)=e^x (x-1)+e^x=xe^x\)
切線的斜率為\(k=f'(0)=0\)
\(f(0)=-1\)
所以切線方程為\(y-f(0)=k(x-0)\),即\(y=-1\)
(2) \(f'(x)=e^x (x-a-1)+e^x=e^x (x-a)\)
\(x⩾a\)時,\(f'(x)⩾0\)\(f(x)\)單調遞增,
\(x<a\)時,\(f'(x)<0\)\(f(x)\)單調遞減,
所以\(f(x)\)的單調遞增區間為\((a,+∞)\),單調遞減區間為\((-∞,a)\)
(3)當\(a⩾1\)時,\(f(x)\)\((0,1)\)上單調遞減,
所以\(f(x)_{\min }=f(1)=e a\)
\(a⩽0\)時,\(f(x)\)在 上單調遞增,
所以\(f(x)_{\min }=f(0)=-a-1\)
\(0<a<1\)時,\(f(x)\)\((0,a)\)上單調遞減,在\((a,+∞)\)上單調遞增,
所以 \(f(x)_{\min }=f(a)=e^a(a-a-1)=-e^a\)
綜上所述, \(f(x)_{\min }=\left\{\begin{array}{l} -a-1, a \leqslant 0 \\ -e^a, 0<a<1 \\ -a e, a \geqslant 1 \end{array}\right.\)
 

【鞏固練習】

1.函式\(y=\dfrac{x}{2}+\cos x, x \in\left[0, \dfrac{\pi}{2}\right]\)的最大值為 (  )
 A.\(\dfrac{\sqrt{3}}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{\pi}{12}+\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{\pi}{6}+\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{\sqrt{3}}{2}\)
 

2.已知函式\(f(x)=e^x (2x^2-3x)\).則函式\(f(x)\)在區間\(\left[0,2\right]\)上的最大值為\(\underline{\quad \quad}\)
 

3.已知函式\(f(x)=x-\dfrac{a}{e^x}\)
  (1)當\(a=-1\)時,求函式\(f(x)\)的單調區間;
  (2)若函式\(f(x)\)\(\left[0,1\right]\)上的最小值為\(\dfrac{3}{2}\),求實數\(a\)的值.
 
 

參考答案

  1. 答案 \(B\)
    解析 \(f'(x)=\dfrac{1}{2}-\sin x\)
    \(f'(x)=0\),得\(x=\dfrac{\pi}{6}\)
    \(0≤x<\dfrac{\pi}{6}\)時,\(f'(x)>0\)\(f(x)\)單調遞增,
    \(\dfrac{\pi}{6}<x≤\dfrac{\pi}{2}\)時,\(f'(x)<0\)\(f(x)\)單調遞減,
    所以當\(x=\dfrac{\pi}{6}\)時,\(f(x)\)取得極大值,也是最大值,
    \(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{12}+\dfrac{\sqrt{3}}{2}\)
    故選:\(B\)

  2. 答案 \(2e^2\)
    解析 \(f(x)=e^x (2x^2-3x)\)
    \(f'(x)=e^x (2x^2+x-3)=e^x (2x+3)(x-1)\)\(x∈[0,2]\)
    所以\(f'(x)\)\(f(x)\)在區間\(\left[0,2\right]\)上隨\(x\)變化的情況如下:

\(x\) \(0\) \((0,1)\) \(1\) \((1,2)\) \(2\)
\(f'(x)\) \(-\) \(0\) \(+\)
\(f(x)\) \(0\) \(\downarrow\) \(-e\) \(\uparrow\) \(2e^2\)

所以\(f(x)\)\([0,2]\)單調遞減區間為\([0,1)\),單調遞增區間為\((1,2]\)
可知:當\(x=2\)時,\(f(x)\)取得最大值\(2e^2\)
故答案為\(2e^2\)

  1. 答案 (1) \(f(x)\)\((-∞,0)\)遞減,在\((0,+∞)\)遞增;(2) \(a=-\sqrt{e}\).
    解析 (1)\(f(x)\)的定義域是\(R\),且 \(f^{\prime}(x)=1+\dfrac{a}{e^x}=\dfrac{e^x+a}{e^x}\)
    \(a=-1\)時, \(f^{\prime}(x)=\dfrac{e^x-1}{e^x}\)
    \(f'(x)>0\),得\(x∈(0,+∞)\),由\(f'(x)<0\),得\(x∈(-∞,0)\)
    \(\therefore f(x)\)\((-∞,0)\)遞減,在\((0,+∞)\)遞增;
    (2)由(1)得 \(f^{\prime}(x)=\dfrac{e^x+a}{e^x}\)
    ①若\(a≥-1\),則\(e^x+a≥0\),即\(f'(x)≥0\)\(\left[0,1\right]\)上恆成立,
    \(f(x)\)\(\left[0,1\right]\)上是增函式,
    \(\therefore f(x)_{\min }=f(0)=-a=\dfrac{3}{2}\)\(\therefore a=-\dfrac{3}{2}\)(舍);
    ②若\(a≤-e\),則\(e^x+a≤0\),即\(f'(x)≤0\)\((0,1 ]\)恆成立,
    \(f(x)\)\(\left[0,1\right]\)遞減, \(\therefore f(x)_{\min }=f(1)=1-\dfrac{a}{e}=\dfrac{3}{2}\)\(\therefore a=-\dfrac{e}{2}\)(舍);
    ③若\(-e<a<-1\),當\(0<x<\ln (-a)\)時,\(f'(x)<0\)
    \(\therefore f(x)\)\((0,\ln (-a))\)遞減,
    \(\ln (-a)<x<1\)時,\(f'(x)>0\)
    \(\therefore f(x)\)\((\ln (-a),1)\)遞增;
    \(\therefore f(x)_{min}=f(\ln ⁡(-a))=\ln ⁡(-a)+1=\dfrac{3}{2}\)
    \(\therefore a=-\sqrt{e}\)
    綜上所述:\(a=-\sqrt{e}\)
     

【題型2】 證明不等式

【典題1】 證明:不等式\(\ln ⁡x≤x-1\).
證明 設\(f(x)=\ln ⁡x-x+1\)
\(\therefore\)函式定義域是\((0,+∞)\)\(f^{\prime}(x)=\dfrac{1}{x}-1=\dfrac{1-x}{x}\)
\(f'(x)=0\),得\(x=1\)
\(x>1\)時,\(f'(x)<0\)\(f(x)\)單調遞減;
\(x<1\)時,\(f'(x)>0\)\(f(x)\)單調遞增;
所以\(f(x)\)\(x=1\)處取到最大值\(f(1)=0\)
\(f(x)=\ln ⁡x-x+1≤0\),所以\(\ln ⁡x≤x-1\).
點撥 建構函式證明不等式恆成立.
 

【典題2】 已知函式\(f(x)=\dfrac{\ln x}{x}\)
  (1)求函式\(f(x)\)的單調區間;
  (2)已知\(a\)\(b∈R\)\(a>b>e\), (其中\(e\)是自然對數的底數), 求證: \(b^a>a^b\)
解析 (1)\(f(x)=\dfrac{\ln x}{x}\)\(\therefore f^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
\(x>e\)時, \(f'(x)<0\)\(\therefore\)函式\(f(x)\)\((e,+∞)\)上是單調遞減.
\(0<x<e\)時, \(f'(x)>0\)\(\therefore\)函式\(f(x)\)\((0,e)\)上是單調遞增.
\(\therefore f(x)\)的增區間是\((0,e)\),減區間是\((e,+∞)\)
(2)證明: \(\because b^a>0\)\(a^b>0\)
要證: \(b^a>a^b\)
只要證: \(a\ln ⁡b>b\ln ⁡a\)
只要證\(\dfrac{\ln b}{b}>\dfrac{\ln a}{a}\).\((\because a>b>e)\)
由(1)得函式\(f(x)\)\((e,+∞)\)上是單調遞減.
\(a>b>e\)時,有\(f(b)>f(a)\)\(\dfrac{\ln b}{b}>\dfrac{\ln a}{a}\)
\(\therefore b^a>a^b\).
點撥 類似\(b^a>a^b\)這樣的指數式不等式,可兩邊去對數,化為對數式 \(\dfrac{\ln b}{b}>\dfrac{\ln a}{a}\),可建構函式 \(f(x)=\dfrac{\ln x}{x}\).
 

【鞏固練習】

1.證明:不等式\(e^x-x-1≥0\)成立.
 
 

2.證明 \(\sin x>\dfrac{2 x}{\pi}\)\(x \in\left(0, \dfrac{\pi}{2}\right)\).
 

3.已知函式\(f(x)=xe^ax-e^x\)
  (1)當\(a=\dfrac{1}{2}\)時,判斷\(f(x)\)\([0,+∞)\)的單調性;
  (2)設\(n∈N^*\),證明:\(\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}>\ln (n+1)\).
 
 

參考答案

  1. 證明 設\(f(x)=e^x-x-1\)\(\therefore f'(x)=e^x-1\)
    \(f'(x)=0\),得\(x=0\)
    \(x>0\)時,\(f'(x)>0\)\(f(x)\)單調遞增;
    \(x<0\)時,\(f'(x)<0\)\(f(x)\)單調遞減;
    所以\(f(x)\)\(x=0\)處取到最小值\(f(0)=0\)
    \(f(x)=e^x-x-1≥0\).

  2. 證明 令 \(f(x)=\dfrac{\sin x}{x}\)\(x \in\left(0, \dfrac{\pi}{2}\right)\)
    \(f^{\prime}(x)=\dfrac{x \cdot \cos x-\sin x}{x^2}\)
    \(g(x)=x\cdot \cos ⁡x-\sin ⁡x\)
    \(g'(x)=\cos ⁡x-x\cdot \sin ⁡x-\cos ⁡x=-x\cdot \sin ⁡x\)
    \(x \in\left(0, \dfrac{\pi}{2}\right)\)時,\(g'(x)<0\),則\(g(x)\)\(\left(0, \dfrac{\pi}{2}\right)\)上遞減,
    \(g(x)<g(0)=0\)
    即當 \(x \in\left(0, \dfrac{\pi}{2}\right)\)時,\(f'(x)<0\),所以\(f(x)\)\(\left(0, \dfrac{\pi}{2}\right)\)上遞減,
    所以 \(f(x)>f\left(\dfrac{\pi}{2}\right)=\dfrac{2}{\pi}\)
    \(\dfrac{\sin x}{x}>\dfrac{2}{\pi} \Rightarrow \sin x>\dfrac{2 x}{\pi}\)\(x \in\left(0, \dfrac{\pi}{2}\right)\).

  3. 答案 (1)\(f(x)\)\([0,+∞)\)上單調遞減;(2) 略.
    解析 (1)解:當\(a=\dfrac{1}{2}\)時, \(f(x)=x e^{\dfrac{1}{2} x}-e^x\)
    \(f^{\prime}(x)=e^{\dfrac{1}{2} x}+\dfrac{1}{2} x e^{\dfrac{1}{2} x}-e^x=e^{\dfrac{1}{2} x}\left(1+\dfrac{1}{2} x-e^{\dfrac{1}{2} x}\right)\)
    \(g(x)=1+\dfrac{1}{2} x-e^{\dfrac{1}{2} x}\)\(x\in [0,+∞)\)
    \(g^{\prime}(x)=\dfrac{1}{2}-\dfrac{1}{2} e^{\dfrac{1}{2} x} \leq 0\)
    \(g(x)=1+\dfrac{1}{2} x-e^{\dfrac{1}{2} x}\)\(x\in [0,+∞)\)為減函式,
    \(g(0)=0\),則\(g(x)≤0\),即\(f'(x)≤0\)
    即當\(a=\dfrac{1}{2}\)時,\(f(x)\)\([0,+∞)\)上單調遞減;
    (2)證明:由(1)可得: \(x e^{\dfrac{1}{2} x}-e^x \leq-1\),當且僅當\(x=0\)時取等號,
    \(t=e^x\)\(x>0\),則\(t>1\)
    \(\sqrt{t} \ln t<t-1\),即 \(\sqrt{t}-\dfrac{1}{\sqrt{t}}>\ln t\)
    \(t=\dfrac{n+1}{n}\),則 \(\sqrt{\dfrac{n+1}{n}}-\dfrac{1}{\sqrt{\dfrac{n+1}{n}}}>\ln \dfrac{n+1}{n}\)
    \(\dfrac{1}{\sqrt{n(n+1)}}=\dfrac{1}{\sqrt{n^2+n}}>\ln \dfrac{n+1}{n}\)
    \(\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}>\ln \dfrac{2}{1}+\ln \dfrac{3}{2}+\cdots+\ln \dfrac{n+1}{n}\)\(=\ln \left(\dfrac{2}{1} \times \dfrac{3}{2} \times \ldots \times \dfrac{n+1}{n}\right)=\ln ⁡(n+1)\)
    \(\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}>\ln (n+1)\).
     

【題型3】 函式的最值綜合運用

【典題1】 已知函式\(f(x)=x^2-2 \ln x-m\)\(g(x)=\left(\dfrac{1}{2}\right)^x+m\)
  (1)存在\(x_1\in \left[1,4\right]\),對任意\(x_2\in \left[1,4\right]\),有不等式\(f(x_1 )⩽g(x_2 )\)成立,求實數\(m\)的取值範圍;
  (2)如果存在\(x_1\)\(x_2\in \left[1,4\right]\),使得\(f(x_1 )-f(x_2 )⩾M\)成立,求滿足條件的最大整數\(M\)
解析 (1)存在\(x_1\in \left[1,4\right]\),對任意\(x_2\in \left[1,4\right]\),有不等式\(f(x_1 )⩽g(x_2 )\)成立,
所以 \(f(x)_{\min } \leqslant g(x)_{\min }\),因為\(f(x)=x^2-2\ln ⁡x-m\)
所以 \(f^{\prime}(x)=2 x-\dfrac{2}{x}=\dfrac{2 x^2-2}{x}=\dfrac{2(x-1)(x+1)}{x} \geqslant 0\)對任意的\(x\in \left[1,4\right]\)恆成立,
所以函式\(y=f(x)\)在區間\(\left[1,4\right]\)上單調遞增,
所以\(f(x)_{\min }=f(1)=1-m,\),函式 \(g(x)=\left(\dfrac{1}{2}\right)^x+m\)在區間\(\left[1,4\right]\)上的單調遞減,
所以\(g(x)_{\min }=g(4)=m+\dfrac{1}{16}\)
所以 \(1-m \leqslant m+\dfrac{1}{16}\),解得 \(m \geqslant \dfrac{15}{32}\)
所以實數\(m\)的取值範圍是\(\left[\dfrac{15}{32},+\infty\right)\)
(2)存在存在\(x_1\)\(x_2\in \left[1,4\right]\),使得\(f(x_1 )-f(x_2 )⩾M\)成立,
所以 \(M \leqslant\left[f\left(x_1\right)-f\left(x_2\right)\right]_{\text {max }}\),即 \(M \leqslant f(x)_{\text {max }}-f(x)_{\text {min }}\)
由(1)可知,函式\(y=f(x)\)在區間\(\left[1,4\right]\)上單調遞增,
所以\(f(x)_{min}=f(1)=1-m\)\(f(x)_{max}=16-4\ln ⁡2-m\)
所以 \(M \leqslant f(x)_{\max }-f(x)_{\min }=15-4 \ln 2\)
所以滿足條件的最大整數\(M\)的值為\(12\)
 

【鞏固練習】

1.已知函式\(f(x)=x\ln x\)
  (1)求\(f(x)\)的最小值;
  (2)若對所有\(x≥1\)都有\(f(x)≥ax-1\),求實數\(a\)的取值範圍.
 
 

2.己知函式\(f(x)=bx\ln x+3(b≠0)\)\(f'(e)=4\)\(g(x)= -x^2+ax\)
  (l)求函式\(f(x)\)的極值;
  (2)若對\(∀x\in (0,+∞)\)\(f(x)-g(x)≥0\)恆成立,求實數\(a\)的取值範圍.
 
 

參考答案

  1. 答案 (1) \(-\dfrac{1}{e}\);(2) \(a≤1\).
    解析 (1)函式的定義域\((0,+∞)\)
    \(f'(x)=\ln x+1\),令\(f'(x)>0\)\(x>\dfrac{1}{e}\),此時\(f(x)\)遞增,
    \(f'(x)<0\)\(0<x<\dfrac{1}{e}\),此時\(f(x)\)遞減,\(f(x)\)最小值為\(-\dfrac{1}{e}\)
    (2)方法一 分離引數法
    由題意得\(a≤\ln x+\dfrac{1}{x}\),令\(g(x)=\ln x+\dfrac{1}{x}\)
    \(x≥1\)時, \(g^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{x^2}=\dfrac{x-1}{x^2} \geq 0\)
    所以\(g(x)\)遞增,\(g(x)\)的最小值為\(g(1)=1\)
    所以\(a≤1\)
    方法二 直接建構函式法
    對所有\(x≥1\)都有\(f(x)≥ax-1\)等價於\(x\ln x-ax+1≥0\)
    \(h(x)=x\ln x-ax+1\),則\(h'(x)=\ln x+1-a\)
    \(h'(x)=0\)解得 \(x=e^{a-1}\)
    \(0<x<e^{a-1}\)時,\(h'(x)<0\)\(h(x)\)遞減;
    \(x>e^{a-1}\)時,\(h'(x)>0\)\(h(x)\)遞增;
    \(\therefore h(x)≥h(e^{a-1} )=e^{a-1} (a-1)-ae^{a-1}+1=1-e^{a-1}\)
    若要滿足題意,則\(1-e^{a-1}≥0\),解得\(a≤1\).

  2. 答案 (1) 極小值\(3-\dfrac{2}{e}\),無極大值;(2) \(a≤4\).
    解析 (1)\(f'(x)=b(\ln x+1)\)
    \(f'(e)=4\)\(2b=4\),解得\(b=2\)
    所以\(f(x)=2x\ln x+3\)\(f'(x)=2(\ln x+1)\)
    \(f'(x)=0\)\(x=\dfrac{1}{e}\)
    \(x<\dfrac{1}{e}\)時,\(f'(x)<0\);當\(x>\dfrac{1}{e}\)時,\(f'(x)>0\)
    所以函式\(f(x)\)的極小值\(f\left(\dfrac{1}{e}\right)=3-\dfrac{2}{e}\),無極大值.
    (2) 對\(∀x\in (0,+∞)\)\(2x\ln x+3+x^2-ax≥0\)恆成立
    等價於對\(∀x\in (0,+∞)\)\(a \leq 2 \ln x+x+\dfrac{3}{x}\)恆成立
    \(g(x)=2 \ln x+x+\dfrac{3}{x}\)
    \(g^{\prime}(x)=\dfrac{2}{x}+1-\dfrac{3}{x^2}=\dfrac{x^2+2 x-3}{x^2}=\dfrac{(x-1)(x+3)}{x^2}\)
    所以當\(x<1\)時,\(g'(x)<0\);當\(x>1\)時,\(g'(x)>0\)
    所以\(g(x)≥g(1)=4\)
    所以\(a≤4\).
     

分層練習

【A組---基礎題】

1.函式\(y=x^3+x^2-x+1\)在區間\(\left[-2,1\right]\)上的最小值為( )
 A. \(\dfrac{22}{27}\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(-1\) \(\qquad \qquad \qquad \qquad\) D.\(-4\)
 

2.若函式\(f(x)=\ln ⁡x-ax\)在區間\((0,+∞)\)上的最大值為\(0\),則\(f(e)=\) ( )
 A.\(0\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{e}\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(e\)
 

3.函式\(f(x)=ax-\ln ⁡x⩾0(a\in R)\)恆成立的一個必要不充分條件是( )
 A. \(a \in\left[\dfrac{1}{e},+\infty\right)\) \(\qquad \qquad \qquad \qquad\) B. \(a∈[0,+∞)\) \(\qquad \qquad \qquad \qquad\) C.\(a\in [1,+∞)\) \(\qquad \qquad \qquad \qquad\) D.\(a\in (-∞,e ]\)
 

4.函式\(y=x+2\cos x\)在區間 \(\left[0, \dfrac{\pi}{2}\right]\)上的最大值是\(\underline{\quad \quad}\),最小值是\(\underline{\quad \quad}\)
 

5.若函式\(f(x)=\dfrac{x^3}{3}+x^2-2\)在區間\((a-4,a)\)上存在最小值,則\(a\)的取值範圍是\(\underline{\quad \quad}\)
 

6.已知函式\(f(x)=x^3-3x^2-9x\)
  (1)求函式\(f(x)\)在點\((0,0)\)處的切線方程;
  (2)求函式\(f(x)\)在區間\(\left[-2,2\right]\)的最大值和最小值.
 
 

7.已知函式\(f(x)=x\ln x\)\(g(x)=-x^2+ax-3\)
  (1)求函式\(f(x)\)的圖象在點\((1,0)\)處的切線方程;
  (2)若對\(∀x\in (0,+∞)\)\(2f(x)≥g(x)\)恆成立,求實數\(a\)的取值範圍.
 
 

8.已知函式\(f(x)=x-1-\ln x\)
  (1)求證:\(f(x)≥0\)
  (2)求證:對於任意正整數\(n\)\(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2^2}\right) \cdots\left(1+\dfrac{1}{2^n}\right)<e\)
 
 

9.已知函式\(f(x)=e^x-a(x+1)\)
  (1)若\(f(x)≥0\)恆成立,求\(a\)的取值範圍;
  (2)證明:當\(a=0\)時,曲線\(y=f(x)(x>0)\)總在曲線\(y=2+\ln ⁡x\)的上方.
 
 

參考答案

  1. 答案 \(C\)
    解析 \(y'=3x^2+2x-1=(3x-1)(x+1)\)
    \(y'>0\),解得:\(x>\dfrac{1}{3}\)\(x<-1\),令\(y'<0\),解得:\(-1<x<\dfrac{1}{3}\)
    \(\therefore\)函式在\([-2,-1)\)遞增,在\(\left(-1, \dfrac{1}{3}\right)\)遞減,在\(\left(\dfrac{1}{3}, 1\right]\)遞增,
    \(\therefore x=-1\)時,取極大值,極大值是\(2\)\(x=\dfrac{1}{3}\)時,函式取極小值,極小值是\(\dfrac{22}{27}\)
    \(x=-2\)時,\(y=-1\)\(x=1\)時,\(y=2\)
    故函式的最小值是\(-1\)
    故選:\(C\)

  2. 答案 \(B\)
    解析 \(f^{\prime}(x)=\dfrac{1}{x}-a=\dfrac{1-a x}{x}\)\(x>0\)
    \(a⩽0\)時,在\((0,+∞)\)\(f'(x)>0\)\(f(x)\)單調遞增,
    所以\(f(x)\)沒有最大值,不合題意,
    \(a>0\)時,令\(f'(x)=0\),得\(x=\dfrac{1}{a}\)
    所以在 \(\left(0, \dfrac{1}{a}\right)\)上,\(f'(x)>0\)\(f(x)\)單調遞增,
    \(\left(\dfrac{1}{a},+\infty\right)\)上,\(f'(x)<0\)\(f(x)\)單調遞減,
    所以\(\alpha f(x)_{\max }=f\left(\dfrac{1}{a}\right)=\ln \dfrac{1}{a}-a \times \dfrac{1}{a}=\ln \dfrac{1}{a}-1=0\)
    所以\(\dfrac{1}{a}=e\),所以\(a=\dfrac{1}{e}\)
    故選:\(B\)

  3. 答案 \(B\)
    解析 根據題意,函式\(f(x)=ax-\ln ⁡x\),其定義域為\((0,+∞)\)
    \(f(x)=ax-\ln ⁡x⩾0(a\in R)\)恆成立,必有 \(a \geqslant \dfrac{\ln x}{x}\)
    \(\text { z } g(x)=\dfrac{\ln x}{x}\),其導數 \(g^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)
    在區間\((0,e)\)上, \(g^{\prime}(x)=\dfrac{1-\ln x}{x^2}>0\),則\(g(x)\)\((0,e)\)上單調遞增,
    \((e,+∞)\)上,\(g^{\prime}(x)=\dfrac{1-\ln x}{x^2}<0\) ,則\(g(x)\)\((e,+∞)\)上單調遞減,
    \(g(x)_{max}=g(e)=\dfrac{1}{e}\)
    \(a \geqslant \dfrac{\ln x}{x}\)恆成立,必有\(a⩾\dfrac{1}{e}\)
    依次分析選項:
    對於\(A\)\(a \in\left[\dfrac{1}{e},+\infty\right)\)\(f(x)=ax-\ln ⁡x⩾0\)恆成立的充分必要條件,不符合題意,
    對於\(B\)\(a \in[0,+\infty)\)\(f(x)=ax-\ln ⁡x⩾0\)恆成立的一個必要不充分,符合題意,
    對於\(C\)\(a\in [1,+∞)\)\(f(x)=ax-\ln ⁡x⩾0\)恆成立的一個充分不必要,不符合題意,
    對於\(D\)\(a\in (-∞,e ]\)\(f(x)=ax-\ln ⁡x⩾0\)恆成立的既不充分也不必要條件,不符合題意,
    故選:\(B\)

  4. 答案 \(\dfrac{\pi}{6}+\sqrt{3}\)\(\dfrac{\pi}{2}\)
    解析 由題意,可知:
    \(x\in \left[0,\dfrac{\pi}{2}\right]\)時,\(y'=1-2\sin x\)
    ①當\(y'=0\)時,即\(1-2\sin x=0\)\(\sin x=\dfrac{1}{2}\)\(x=\dfrac{\pi}{6}\)時,函式取極值\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{6}+\sqrt{3}\)
    ②當\(y'>0\)時,即\(1-2\sin x>0\)\(\sin x<\dfrac{1}{2}\)\(0≤x<\dfrac{\pi}{6}\)時,函式\(f(x)\)單調遞增.
    ③當\(y'<0\)時,即\(1-2\sin x<0\)\(\sin x>\dfrac{1}{2}\)\(\dfrac{\pi}{6}<x≤\dfrac{\pi}{2}\)時,函式\(f(x)\)單調遞減.
    \(\because f(0)=2\)\(f\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{6}+\sqrt{3}\)\(f\left(\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\)
    \(\therefore f(x)\)在區間\(\left[0,\dfrac{\pi}{2}\right]\)上的圖象大致如下:

    則由圖象可知:
    在區間\(\left[0,\dfrac{\pi}{2}\right]\)上,當\(x=\dfrac{\pi}{6}\)時,\(f(x)\)取最大值\(\dfrac{\pi}{6}+\sqrt{3}\)
    \(x=\dfrac{\pi}{2}\)時,\(f(x)\)取最小值\(\dfrac{\pi}{2}\)
    答案 為:\(\dfrac{\pi}{6}+\sqrt{3}\)\(\dfrac{\pi}{2}\)

  5. 答案 \([1,4)\)
    解析 \(f^{\prime}(x)=x^2+2 x=x(x+2)\)
    \(f'(x)>0\),解得:\(x>0\)\(x<-2\)
    \(f'(x)<0\),解得:\(-2<x<0\)
    \(f(x)\)\((-∞,-2)\)遞增,在\((-2,0)\)遞減,在\((0,+∞)\)遞增,
    \(f(x)_{\text {min }}=f(x)_{\text {極小值 }}=f(0) \text {, }\)
    \(f(x)\)在區間\((a-4,a)\)上存在最小值,
    \(f(a-4)≥f(0)\)
    \(\dfrac{1}{3}(a-4)^3+(a-4)^2-2 \geq-2\),解得:\(a≥1\)①,
    \(a-4<0<a\),解得:\(0<a<4\)②,
    綜合①②得:\(1≤a<4\).

  6. 答案 (1) \(y=-9x\);(2)\(f(x)_{max}=5\)\(f(x)_{min}=-22\).
    解析 (1) \(f'(x)=3x^2-6x-9\),則\(f'(0)=-9\)
    所以函式在點\((0,0)\)處的切線方程為\(y=-9x\)
    (2)由(1)得\(f'(x)=3x^2-6x-9=3(x-3)(x+1)\)
    \(f'(x)=0\),得\(x=3\),或\(x=-1\)
    \(f'(x)>0\),得\(x<-1\)\(x>3\);令\(f'(x)<0\),得\(-1<x<3\)
    所以\(f(x)\)\([-2,-1)\)上單調遞增,在\((-1,2 ]\)上單調遞減,
    因為\(f(-2)=-2\)\(f(2)=-22\)\(f(-1)=5\)
    所以\(f(x)_{max}=5\)\(f(x)_{min}=-22\)

  7. 答案 (1) \(y=x-1\);(2)\((-∞,4 ]\).
    解析 (1)\(\because f'(x)=1+\ln x\)\(\therefore f'(1)=1=k\)
    故切線方程是:\(y=x-1\)
    (2)由題意,不等式化為\(ax≤2x\ln x+x^2+3\),因為\(x>0\)
    所以 \(a \leq 2 \ln x+x+\dfrac{3}{x}\),當\(x>0\)時恆成立.
    \(h(x)=2 \ln x+x+\dfrac{3}{x}\)
    \(h^{\prime}(x)=\dfrac{2}{x}-\dfrac{3}{x^2}+1=\dfrac{(x+3)(x-1)}{x^2}\)
    \(0<x<1\)時,\(h'(x)<0\)\(x>1\)時,\(h'(x)>0\)
    所以\(h(x)\)\((0,1)\)上遞減,在\((1,+∞)\)上遞增.
    \(h(x)_{min}=h(1)=2\ln 1+1+3=4\).所以\(a≤4\)
    故所求\(a\)的範圍是\((-∞,4 ]\)

  8. 答案 (1) 略;(2)略 .
    解析 證明:(1) \(f^{\prime}(x)=1-\dfrac{1}{x}=\dfrac{x-1}{x}\)
    \(x>1\)\(f'(x)>0\)\(f(x)\)單調增,
    \(0<x<1\)\(f'(x)<0\)\(f(x)\)單調減,
    所以 \(f(x)\)的最小值為\(f(1)=0\)
    (2)由(1)知\(\ln x≤x-1\)
    \(x=1+\dfrac{1}{2^n }\)\(\ln (1+\dfrac{1}{2^n })<\dfrac{1}{2^n }\)
    所以\(\ln \left(1+\dfrac{1}{2}\right)+\ln \left(1+\dfrac{1}{2^2}\right)+\cdots \ln \left(1+\dfrac{1}{2^2}\right)<\dfrac{1}{2^1}+\dfrac{1}{2^2}+\cdots \dfrac{1}{2^n}\)\(=\dfrac{\dfrac{1}{2}\left(1-\left(\dfrac{1}{2}\right)^n\right)}{1-\dfrac{1}{2}}=1-\left(\dfrac{1}{2}\right)^n<1\)
    所以 \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2^2}\right) \cdots\left(1+\dfrac{1}{2^n}\right)<e\)

  9. 答案 (1)\((0,1 ]\);(2) 略.
    解析 (1)\(f'(x)=e^x-a(x\in R)\)
    \(a=0\)時,\(f(x)=e^x>0\)符合題意,
    \(a<0\)時,取\(x_0=-1+\dfrac{1}{a}\)
    \(f(x_0 )=e^{-1+\dfrac{1}{a}}-a(-1+\dfrac{1}{a}+1)=e^{-1+\dfrac{1}{a}}-1<0\),不符合題意,
    ③當\(a>0\)時,令\(f'(x)=0\),得\(x=\ln ⁡a\)
    所以在\((-∞,\ln ⁡a)\)上,\(f'(x)<0\)\(f(x)\)單調遞減,
    \((\ln ⁡a,+∞)\)上,\(f'(x)>0\)\(f(x)\)單調遞增,
    所以\(f(x)_{\min }=f(\ln a)=a-a(1+\ln a)=-a \ln a\)
    \(f(x)≥0\)恆成立,則\(f(x)\)的最小值大於等於\(0\),即\(-a \ln ⁡a≥0\)
    因為\(a>0\),所以\(0<a⩽1\)
    綜上所述,\(a\)的取值範圍為\((0,1 ]\)
    (2)證明:
    \(a=0\)時,令\(h(x)=f(x)-(2+\ln ⁡x)=e^x-\ln ⁡x-2(x>0)\)
    所以\(h'(x)=e^x-\dfrac{1}{x}\)\((0,+∞)\)上單調遞增,
    \(h'\left(\dfrac{1}{2}\right)=e^{\dfrac{1}{2}}-2<0\)\(h'(1)=e-1>0\)
    所以存在\(x_0\in (0,+∞)\),使得\(h'(x_0 )=e^{x_0}-\dfrac{1}{x}_0 =0\)
    \(e^{x_0}=\dfrac{1}{x}_0\),且\(\dfrac{1}{2}<x_0<1\)
    所以在\((0,x_0 )\)上,\(g'(x)<0\)\(g(x)\)單調遞減,
    \((x_0,+∞)\)上,\(g'(x)>0\)\(g(x)\)單調遞增,
    所以\(h(x)_{min}=h(x_0 )=e^{x_0}-\ln ⁡x_0-2=\dfrac{1}{x}_0 +x_0-2\)
    因為\(x_0 \in\left(\dfrac{1}{2}, 1\right)\)
    所以\(h\left(x_0\right)=\dfrac{1}{x_0}+x_0-2>2 \sqrt{\dfrac{1}{x_0} \cdot x_0}-2=0\)
    所以當\(a=0\)時,\(f(x)>2+\ln ⁡x(x>0)\)
    所以當\(a=0\)時,曲線\(y=f(x)(x>0)\)總在曲線\(y=2+\ln ⁡x\)的上方.
     

【B組---提高題】

1.(多選)下列不等式中恆成立的有(  )
 A.\(\ln (x+1) \geq \dfrac{x}{x+1}\)\(x>-1\) \(\qquad \qquad \qquad \qquad\) B.\(\ln x \leq \dfrac{1}{2}\left(x-\dfrac{1}{x}\right)\)\(x>0\)
\(\qquad \qquad \qquad \qquad\) C.\(e^x≥x+1\) \(\qquad \qquad \qquad \qquad\) D.\(\cos x≥1-\dfrac{1}{2} x^2\)
 

2.(多選)設 \(f(x)=\dfrac{\sin x}{x^a}\)\(x \in\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\)的最大值為\(M\),則(  )
 A.當\(a=-1\)時,\(M>\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) B.當\(a=1\)時,\(M<1\) \(\qquad \qquad \qquad \qquad\)
C.當\(a=2\)時,\(M<\sqrt{3}\) \(\qquad \qquad \qquad \qquad\) D.當\(a=3\)時,\(M<2\sqrt{3}\)
 

3.已知函式\(f(x)=ax^2\)\(g(x)=x\ln ⁡x\)
  (1)若\(f(x)⩾g(x)\)恆成立,求實數\(a\)的取值範圍;
  (2)若\(a=1\)\(G(x)=f(x)-g(x)-1\),且\(mn>1\),證明:\(G(m)+G(n)>0\)
 
 

參考答案

  1. 答案 \(ACD\)
    解析 選項\(A\),設 \(f(x)=\ln (x+1)-\dfrac{x}{x+1}(x>-1)\)
    \(f^{\prime}(x)=\dfrac{1}{x+1}-\dfrac{1}{(x+1)^2}=\dfrac{x}{(x+1)^2}\)
    \(-1<x<0\)時,\(f'(x)<0\)\(f(x)\)單調遞減;
    \(x>0\)時,\(f'(x)>0\)\(f(x)\)單調遞增.
    \(\therefore f(x)_{min}=f(0)=0\),即\(f(x)≥0\)\((-1,+∞)\)上恆成立,
    \(\therefore \ln (x+1) \geq \dfrac{x}{x+1}(x>-1)\)恆成立,即\(A\)正確;
    選項\(B\),設 \(g(x)=\ln x-\dfrac{1}{2}\left(x-\dfrac{1}{x}\right)(x>0)\)
    \(g^{\prime}(x)=\dfrac{1}{x}-\dfrac{1}{2}\left(1+\dfrac{1}{x^2}\right)=-\dfrac{(x-1)^2}{2 x^2} \leq 0\)恆成立,
    \(\therefore g(x)\)\((0,+∞)\)上單調遞減,
    \(g(1)=0\)\(\therefore g(x)≤0\)\((0,+∞)\)上不可能恆成立,
    \(\therefore \ln x \leq \dfrac{1}{2}\left(x-\dfrac{1}{x}\right)(x>0)\)不恆成立,即\(B\)錯誤;
    選項\(C\),設$h(x)=ex-x-$1,則$h'(x)=ex-1\(, 令\)h'(x)=0\(,解得\)x=0\(, 當\)x<0\(時,\)h'(x)<0\(,\)h(x)\(單調遞減; 當\)x>0\(時,\)h'(x)>0\(,\)h(x)\(單調遞增. \)\therefore h(x){min}=h(0)=0\(,即\)h(x)≥0\(在\)R\(上恆成立, \)\therefore e^x≥x+1\(恆成立,即\)C\(正確; 選項\)D\(,設\)t(x)=\cos x-1+\dfrac{1}{2} x^2\(, 則\)t'(x)=-\sin x+x\(, 令\)m(x)=t'(x)=-\sin x+x\(, 則\)m'(x)=-\cos x+1≥0\(恆成立,即\)m(x)\(在\)R\(上單調遞增, 又\)m(0)=0\(, \)\therefore\(當\)x<0\(時,\)m(x)<0\(,\)t'(x)<0\(,\)t(x)\(單調遞減; 當\)x>0\(時,\)m(x)>0\(,\)t'(x)>0\(,\)t(x)\(單調遞增. \)\therefore t(x){min}=t(0)=0\(,即\)t(x)≥0\(在\)R\(上恆成立, \)\therefore \cos x≥1-\dfrac{1}{2} x^2\(恆成立,即\)D\(正確. 故選:\)ACD$.

  2. 答案 \(AB\)
    解析 對於\(A\):當\(a=-1\)時,\(f(x)=x\sin x\)
    \(f'(x)=\sin x+x\cos x>0\)\(x \in\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\)
    \(f(x)\)\(\left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞增,
    \(M=f\left(\dfrac{\pi}{3}\right)=\dfrac{\pi}{3} \sin \dfrac{\pi}{3}=\dfrac{\sqrt{3} \pi}{6}>\dfrac{\sqrt{3}}{2}\),故\(A\)正確;
    對於\(B\)\(a=1\)時, \(f(x)=\dfrac{\sin x}{x}\)
    \(f^{\prime}(x)=\dfrac{x \cos x-\sin x}{x^2}\)
    \(h(x)=x\cos x-\sin x\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)
    \(h'(x)=\cos x-x\sin x-\cos x=-x\sin x<0\)
    \(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(h\left(\dfrac{\pi}{6}\right)=\dfrac{\pi}{6} \times \dfrac{\sqrt{3}}{2}-\dfrac{1}{2}<0\)
    \(f'(x)<0\)\(f(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(M=f\left(\dfrac{\pi}{6}\right)=\dfrac{\dfrac{1}{2}}{\dfrac{\pi}{6}}=\dfrac{3}{\pi}<1\),故\(B\)正確;
    對於\(C\)\(a=2\)時, \(f(x)=\dfrac{\sin x}{x^2}\)
    \(f^{\prime}(x)=\dfrac{x \cos x-2 \sin x}{x^3}\)
    \(h(x)=x\cos x-2\sin x\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)
    \(h'(x)=\cos x-x\sin x-2\cos x=-\cos x-x\sin x<0\)
    \(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(h\left(\dfrac{\pi}{6}\right)<0\)\(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(h\left(\dfrac{\pi}{6}\right)<0\),即\(f'(x)<0\)\(f(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(M=f\left(\dfrac{\pi}{6}\right)=\dfrac{\dfrac{1}{2}}{\dfrac{\pi^2}{36}}=\dfrac{18}{\pi^2}>\sqrt{3}\),故\(C\)錯誤;
    對於\(D\)\(a=3\)時, \(f(x)=\dfrac{\sin x}{x^3}\)
    \(f^{\prime}(x)=\dfrac{x \cos x-3 \sin x}{x^4}\)
    \(h(x)=x\cos x-3\sin x\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)
    \(h'(x)=\cos x-x\sin x-3\cos x=-2\cos x-x\sin x<0\)
    \(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(h\left(\dfrac{\pi}{6}\right)<0\)\(h(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(h\left(\dfrac{\pi}{6}\right)<0\),即\(f'(x)<0\)\(f(x)\)\(x\in \left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right]\)遞減,
    \(M=f\left(\dfrac{\pi}{6}\right)=\dfrac{108}{\pi^3}>\sqrt{3}\),故\(D\)錯誤;
    故選:\(AB\)

  3. 答案 (1) \(\left[\dfrac{1}{e},+∞\right)\);(2)略.
    解析 (1) \(f(x)=ax^2\)\(g(x)=x\ln ⁡x\)\(x\in (0,+∞)\)
    \(f(x)⩾g(x)\)恆成立 \(\Leftrightarrow a \geqslant \dfrac{\ln x}{x}\)\(x\in (0,+∞)\)
    \(u(x)=\dfrac{\ln x}{x}\)\(x\in (0,+∞)\)
    \(u^{\prime}(x)=\dfrac{1-\ln x}{x^2}\),令 \(u^{\prime}(x)=\dfrac{1-\ln x}{x^2}=0\),解得\(x=e\)
    可得\(x\in (0,e)\)時,\(u'(x)>0\),函式\(u(x)\)單調遞增;
    \(x\in (e,+∞)\)時,\(u'(x)<0\),函式\(u(x)\)單調遞減.
    可得\(x=e\)時,函式\(u(x)\)取得極大值即最大值,\(u(e)=\dfrac{1}{e}\)
    \(\therefore a⩾\dfrac{1}{e}\)
    \(\therefore\)實數\(a\)的取值範圍是\(\left[\dfrac{1}{e},+∞\right)\)
    (2)證明:若\(a=1\)
    \(G(x)=f(x)-g(x)-1=x^2-x\ln ⁡x-1\)\(x\in (0,+∞)\)
    \(G'(x)=2x-\ln ⁡x-1=H(x)\)\(H^{\prime}(x)=2-\dfrac{1}{x}=\dfrac{2 x-1}{x}\)
    \(\therefore x=\dfrac{1}{2}\)時,函式\(H(x)\)取得極小值即最小值,
    \(\therefore G'(x)=H(x)⩾H\left(\dfrac{1}{2}\right)=1-\ln ⁡\dfrac{1}{2}-1=\ln ⁡2>0\)
    \(\therefore\)函式\(G(x)\)\(x\in (0,+∞)\)上單調遞增,\(G(1)=0\)
    不妨設\(n⩽m\)
    \(mn>1\),若\(m>n⩾1\)時,則\(G(m)+G(n)>0\)成立.
    \(m>1⩾n>0\)時,\(\because mn>1\)\(\therefore m>\dfrac{1}{n}>1\)
    \(G(m)+G(n)>G\left(\dfrac{1}{n}\right)+G(n)\)
    要證明\(G(m)+G(n)>0\),只要證明\(G\left(\dfrac{1}{n}\right)+G(n) \geqslant 0\)即可.
    \(F(x)=G(x)+G\left(\dfrac{1}{x}\right)=x^2-x \ln x-1+\dfrac{1}{x^2}-\dfrac{1}{x} \ln \dfrac{1}{x}-1\)
    \(=\left(x-\dfrac{1}{x}\right)^2+\left(\dfrac{1}{x}-x\right) \ln x=\dfrac{\left(1-x^2\right)\left(1-x^2+x \ln x\right)}{x^2}\)\(x\in (0,1)\)
    \(h(x)=1-x^2+x\ln ⁡x\)\(x\in (0,1)\)\(h(1)=0\)
    \(h'(x)=-2x+\ln ⁡x+1\)\(h^{\prime \prime}(x)=-2+\dfrac{1}{x}=\dfrac{1-2 x}{x}\)
    可得\(x=\dfrac{1}{2}\)時,函式\(h'(x)\)取得極大值即最大值,\(h^{\prime}\left(\dfrac{1}{2}\right)=-1+\ln \dfrac{1}{2}+1=-\ln 2<0\)
    \(\therefore h(x)=1-x^2+x\ln ⁡x\)\(x\in (0,1)\)上單調遞減,
    \(\therefore h(x)>h(1)=0\)
    \(\therefore F(x)>F(1)=0\)\(x\in (0,1)\)
    \(\therefore G(m)+G(n)>0\)成立.
    綜上可得:\(mn>1\)\(G(m)+G(n)>0\)成立.
     

【C組---拓展題】

1.已知函式\(f(x)=x+a\ln x+\dfrac{1}{e^x} -x^a (a<0)\),若\(f(x)≥0\)\(x\in [2,+∞)\)上恆成立,則實數\(a\)的取值範圍為\(\underline{\quad \quad}\)
 

2.已知\(f(x)=x\ln ⁡x-\dfrac{1}{2} mx^2-x\)\(m\in R\).若\(f(x)\)有兩個極值點\(x_1\)\(x_2\),且\(x_1<x_2\),求證:\(x_1 x_2>e^2\) (\(e\)為自然對數的底數).
 
 

參考答案

  1. 答案 \([-e,+∞)\)
    解析\(f(x)≥0\)\(x\in [2,+∞)\)上恆成立,
    \(\ln x^a-x^a \geq \ln e^{-x}-e^{-x}\)\(x\in [2,+∞)\)上恆成立,
    易知當\(x\in [2,+∞)\)\(a<0\)時,\(0<x^a<1\)\(0<e^{-x}<1\)
    令函式\(g(t)=\ln t-t(0<t<1)\)
    \(a=\dfrac{1}{t}-1>0\)\(g(t)\)單調遞增,
    故有 \(x^a \geq e^{-x}\)
    \(a \geq \log _x e^{-x}=-\dfrac{x}{\ln x}\)\(x\in [2,+∞)\)上恆成立,
    \(F(x)=-\dfrac{x}{\ln x}(x \geq 2)\)
    \(F^{\prime}(x)=\dfrac{1-\ln x}{(\ln x)^2}\)
    易得\(F(x)\)\([2,e)\)上單調遞增,在\([e,+∞)\)上單調遞減,
    \(F(x)_{max}=F(e)=-e\)
    \(a≥-e\)
    即實數\(a\)的取值範圍是\([-e,+∞)\)
    答案 為:\([-e,+∞)\)

  2. 證明 欲證\(x_1 x_2>e^2\),需證\(\ln ⁡x_1+\ln ⁡x_2>2\)
    \(f(x)\)有兩個極值點\(x_1\)\(x_2\),即函式\(f'(x)\)有兩個零點.
    \(f'(x)=\ln ⁡x-mx\),所以\(x_1\)\(x_2\)是方程\(f'(x)=0\)的兩個不同實根.
    於是,有\(\left\{\begin{array}{l} \ln x_1-m x_1=0 \\ \ln x_2-m x_2=0 \end{array}\right.\),解得 \(m=\dfrac{\ln x_1+\ln x_2}{x_1+x_2}\)
    另一方面,由 \(\left\{\begin{array}{l} \ln x_1-m x_1=0 \\ \ln x_2-m x_2=0 \end{array}\right.\),得\(\ln x_2-\ln x_1=m\left(x_2-x_1\right)\)
    從而可得\(\dfrac{\ln x_2-\ln x_1}{x_2-x_1}=\dfrac{\ln x_1+\ln x_2}{x_1+x_2}\)
    於是, \(\ln x_1+\ln x_2=\dfrac{\left(\ln x_2-\ln x_1\right)\left(x_2+x_1\right)}{x_2-x_1}=\dfrac{\left(1+\dfrac{x_2}{x_1}\right) \ln \dfrac{x_2}{x_1}}{\dfrac{x_2}{x_1}-1}\)
    \(0<x_1<x_2\),設 \(z=\dfrac{x_2}{x_1}\),則\(t>1\)
    因此\(\ln x_1+\ln x_2=\dfrac{(1+t) \ln t}{t-1}\)\(t>1\)
    要證\(\ln ⁡x_1+\ln ⁡x_2>2\),即證 \(\dfrac{(t+1) \ln t}{t-1}>2\)\(t>1\)
    即當\(t>1\)時,有 \(\ln t>\dfrac{2(t-1)}{t+1}\)
    設函式 \(h(t)=\ln t-\dfrac{2(t-1)}{t+1}\)\(t≥1\)
    \(h^{\prime}(t)=\dfrac{1}{t}-\dfrac{2(t+1)-2(t-1)}{(t+1)^2}=\dfrac{(t-1)^2}{t(t+1)^2} \geq 0\)
    所以\(h(t)\)\((1,+∞)\)上的增函式.注意到\(h(1)=0\)
    因此\(h(t)≥h(1)=0\)
    於是,當\(t>1\)時,有 \(\ln t>\dfrac{2(t-1)}{t+1}\)
    所以有\(\ln ⁡x_1+\ln ⁡x_2>2\)成立,\(x_1 x_2>e^2\)