1. 程式人生 > 程式設計 >Python實現Canny及Hough演算法程式碼例項解析

Python實現Canny及Hough演算法程式碼例項解析

任務說明:編寫一個錢幣定位系統,其不僅能夠檢測出輸入影象中各個錢幣的邊緣,同時,還能給出各個錢幣的圓心座標與半徑。

效果

Python實現Canny及Hough演算法程式碼例項解析

程式碼實現

Canny邊緣檢測:

# Author: Ji Qiu (BUPT)
# filename: my_canny.py

import cv2
import numpy as np


class Canny:

  def __init__(self,Guassian_kernal_size,img,HT_high_threshold,HT_low_threshold):
    '''
    :param Guassian_kernal_size: 高斯濾波器尺寸
    :param img: 輸入的圖片,在演算法過程中改變
    :param HT_high_threshold: 滯後閾值法中的高閾值
    :param HT_low_threshold: 滯後閾值法中的低閾值
    '''
    self.Guassian_kernal_size = Guassian_kernal_size
    self.img = img
    self.y,self.x = img.shape[0:2]
    self.angle = np.zeros([self.y,self.x])
    self.img_origin = None
    self.x_kernal = np.array([[-1,1]])
    self.y_kernal = np.array([[-1],[1]])
    self.HT_high_threshold = HT_high_threshold
    self.HT_low_threshold = HT_low_threshold

  def Get_gradient_img(self):
    '''
    計算梯度圖和梯度方向矩陣。
    :return: 生成的梯度圖
    '''
    print ('Get_gradient_img')
    
    new_img_x = np.zeros([self.y,self.x],dtype=np.float)
    new_img_y = np.zeros([self.y,dtype=np.float)
    for i in range(0,self.x):
      for j in range(0,self.y):
        if j == 0:
          new_img_y[j][i] = 1
        else:
          new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]],[self.img[j][i]]]) * self.y_kernal)
        if i == 0:
          new_img_x[j][i] = 1
        else:
          new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1],self.img[j][i]]) * self.x_kernal)

    gradient_img,self.angle = cv2.cartToPolar(new_img_x,new_img_y)#返回幅值和相位
    self.angle = np.tan(self.angle)
    self.img = gradient_img.astype(np.uint8)
    return self.img

  def Non_maximum_suppression (self):
    '''
    對生成的梯度圖進行非極大化抑制,將tan值的大小與正負結合,確定離散中梯度的方向。
    :return: 生成的非極大化抑制結果圖
    '''
    print ('Non_maximum_suppression')
    
    result = np.zeros([self.y,self.x])
    for i in range(1,self.y - 1):
      for j in range(1,self.x - 1):
        if abs(self.img[i][j]) <= 4:
          result[i][j] = 0
          continue
        elif abs(self.angle[i][j]) > 1:
          gradient2 = self.img[i - 1][j]
          gradient4 = self.img[i + 1][j]
          # g1 g2
          #  C
          #  g4 g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #  g2 g1
          #  C
          # g3 g4
          else:
            gradient1 = self.img[i - 1][j + 1]
            gradient3 = self.img[i + 1][j - 1]
        else:
          gradient2 = self.img[i][j - 1]
          gradient4 = self.img[i][j + 1]
          # g1
          # g2 C g4
          #   g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #   g3
          # g2 C g4
          # g1
          else:
            gradient3 = self.img[i - 1][j + 1]
            gradient1 = self.img[i + 1][j - 1]

        temp1 = abs(self.angle[i][j]) * gradient1 + (1 - abs(self.angle[i][j])) * gradient2
        temp2 = abs(self.angle[i][j]) * gradient3 + (1 - abs(self.angle[i][j])) * gradient4
        if self.img[i][j] >= temp1 and self.img[i][j] >= temp2:
          result[i][j] = self.img[i][j]
        else:
          result[i][j] = 0
    self.img = result
    return self.img

  def Hysteresis_thresholding(self):
    '''
    對生成的非極大化抑制結果圖進行滯後閾值法,用強邊延伸弱邊,這裡的延伸方向為梯度的垂直方向,
    將比低閾值大比高閾值小的點置為高閾值大小,方向在離散點上的確定與非極大化抑制相似。
    :return: 滯後閾值法結果圖
    '''
    print ('Hysteresis_thresholding')
    
    for i in range(1,self.x - 1):
        if self.img[i][j] >= self.HT_high_threshold:
          if abs(self.angle[i][j]) < 1:
            if self.img_origin[i - 1][j] > self.HT_low_threshold:
              self.img[i - 1][j] = self.HT_high_threshold
            if self.img_origin[i + 1][j] > self.HT_low_threshold:
              self.img[i + 1][j] = self.HT_high_threshold
            # g1 g2
            #  C
            #  g4 g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #  g2 g1
            #  C
            # g3 g4
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i - 1][j + 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
          else:
            if self.img_origin[i][j - 1] > self.HT_low_threshold:
              self.img[i][j - 1] = self.HT_high_threshold
            if self.img_origin[i][j + 1] > self.HT_low_threshold:
              self.img[i][j + 1] = self.HT_high_threshold
            # g1
            # g2 C g4
            #   g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #   g3
            # g2 C g4
            # g1
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
    return self.img

  def canny_algorithm(self):
    '''
    按照順序和步驟呼叫以上所有成員函式。
    :return: Canny 演算法的結果
    '''
    self.img = cv2.GaussianBlur(self.img,(self.Guassian_kernal_size,self.Guassian_kernal_size),0)
    self.Get_gradient_img()
    self.img_origin = self.img.copy()
    self.Non_maximum_suppression()
    self.Hysteresis_thresholding()
    return self.img

Hough變換

# Author: Ji Qiu (BUPT)
# filename: my_hough.py


import numpy as np
import math

class Hough_transform:
  def __init__(self,angle,step=5,threshold=135):
    '''

    :param img: 輸入的影象
    :param angle: 輸入的梯度方向矩陣
    :param step: Hough 變換步長大小
    :param threshold: 篩選單元的閾值
    '''
    self.img = img
    self.angle = angle
    self.y,self.x = img.shape[0:2]
    self.radius = math.ceil(math.sqrt(self.y**2 + self.x**2))
    self.step = step
    self.vote_matrix = np.zeros([math.ceil(self.y / self.step),math.ceil(self.x / self.step),math.ceil(self.radius / self.step)])
    self.threshold = threshold
    self.circles = []

  def Hough_transform_algorithm(self):
    '''
    按照 x,y,radius 建立三維空間,根據圖片中邊上的點沿梯度方向對空間中的所有單
    元進行投票。每個點投出來結果為一折線。
    :return: 投票矩陣
    '''
    print ('Hough_transform_algorithm')
    
    for i in range(1,self.x - 1):
        if self.img[i][j] > 0:
          y = i
          x = j
          r = 0
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y + self.step * self.angle[i][j]
            x = x + self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          y = i - self.step * self.angle[i][j]
          x = j - self.step
          r = math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y - self.step * self.angle[i][j]
            x = x - self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)

    return self.vote_matrix


  def Select_Circle(self):
    '''
    按照閾值從投票矩陣中篩選出合適的圓,並作極大化抑制,這裡的非極大化抑制我採
    用的是鄰近點結果取平均值的方法,而非單純的取極大值。
    :return: None
    '''
    print ('Select_Circle')
    
    houxuanyuan = []
    for i in range(0,math.ceil(self.y / self.step)):
      for j in range(0,math.ceil(self.x / self.step)):
        for r in range(0,math.ceil(self.radius / self.step)):
          if self.vote_matrix[i][j][r] >= self.threshold:
            y = i * self.step + self.step / 2
            x = j * self.step + self.step / 2
            r = r * self.step + self.step / 2
            houxuanyuan.append((math.ceil(x),math.ceil(y),math.ceil(r)))
    if len(houxuanyuan) == 0:
      print("No Circle in this threshold.")
      return
    x,r = houxuanyuan[0]
    possible = []
    middle = []
    for circle in houxuanyuan:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0],circle[1],circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        middle.append((result[0],result[1],result[2]))
        possible.clear()
        x,r = circle
        possible.append([x,r])
    result = np.array(possible).mean(axis=0)
    middle.append((result[0],result[2]))

    def takeFirst(elem):
      return elem[0]

    middle.sort(key=takeFirst)
    x,r = middle[0]
    possible = []
    for circle in middle:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0],circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        print("Circle core: (%f,%f) Radius: %f" % (result[0],result[2]))
        self.circles.append((result[0],r])
    result = np.array(possible).mean(axis=0)
    print("Circle core: (%f,result[2]))
    self.circles.append((result[0],result[2]))
 

  def Calculate(self):
    '''
    按照演算法順序呼叫以上成員函式
    :return: 圓形擬合結果圖,圓的座標及半徑集合
    '''
    self.Hough_transform_algorithm()
    self.Select_Circle()
    return self.circles

呼叫

# Author: Ji Qiu (BUPT)
# filename: main.py

import cv2
import math
from my_hough import Hough_transform
from my_canny import Canny

# np.set_printoptions(threshold=np.inf)
Path = "picture_source/picture.jpg"
Save_Path = "picture_result/"
Reduced_ratio = 2
Guassian_kernal_size = 3
HT_high_threshold = 25
HT_low_threshold = 6
Hough_transform_step = 6
Hough_transform_threshold = 110

if __name__ == '__main__':
  img_gray = cv2.imread(Path,cv2.IMREAD_GRAYSCALE)
  img_RGB = cv2.imread(Path)
  y,x = img_gray.shape[0:2]
  img_gray = cv2.resize(img_gray,(int(x / Reduced_ratio),int(y / Reduced_ratio)))
  img_RGB = cv2.resize(img_RGB,int(y / Reduced_ratio)))
  # canny takes about 40 seconds
  print ('Canny ...')
  canny = Canny(Guassian_kernal_size,img_gray,HT_low_threshold)
  canny.canny_algorithm()
  cv2.imwrite(Save_Path + "canny_result.jpg",canny.img)
  
  # hough takes about 30 seconds
  print ('Hough ...')
  Hough = Hough_transform(canny.img,canny.angle,Hough_transform_step,Hough_transform_threshold)
  circles = Hough.Calculate()
  for circle in circles:
    cv2.circle(img_RGB,(math.ceil(circle[0]),math.ceil(circle[1])),math.ceil(circle[2]),(28,36,237),2)
  cv2.imwrite(Save_Path + "hough_result.jpg",img_RGB)
  print ('Finished!')

執行效果

Python實現Canny及Hough演算法程式碼例項解析

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支援我們。