1. 程式人生 > 實用技巧 >COCO資料集提取自己需要的類轉VOC

COCO資料集提取自己需要的類轉VOC

github:https://github.com/zcc720/COCO2VOC.git

原文地址:http://www.manongjc.com/article/28607.html

接上篇VOC資料集提取自己需要的類,這次我們依然從coco資料集中提取我們想要的類,並轉為voc格式,用於目標檢測。

一、去官網下載資料集

train2007

val2007

train2014

val2014

annotations2014

annotations2017

二、安裝coco-PythonAPI

linux使用者:

pip install cython
git clonehttps://github.com/cocodataset/cocoapi.git
cd coco/PythonAPI
make

windows使用者:

pip install cython
git clonehttps://github.com/cocodataset/cocoapi.git
cd coco/PythonAPI
python setup.py build_ext --inplace

三、get自己想要的類,製作成voc檔案

COCO資料集目標檢測中有90類:

classes:
     {1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove', 41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hot dog',59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse', 75: 'remote', 76: 'keyboard',77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush'}
 

想要的類

​​​​​​​classes_names = ['car', 'bicycle', 'person', 'motorcycle', 'bus', 'truck']
from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw

#the path you want to save your results for coco to voc
savepath="E:/datasets/COCO/result/"
img_dir=savepath+'images/'
anno_dir=savepath+'Annotations/'
# datasets_list=['train2014', 'val2014']
datasets_list=['train2017']

classes_names = ['car', 'bicycle', 'person', 'motorcycle', 'bus', 'truck']
#Store annotations and train2014/val2014/... in this folder
dataDir= 'E:/datasets/COCO/'

headstr = """\
<annotation>
    <folder>VOC</folder>
    <filename>%s</filename>
    <source>
        <database>My Database</database>
        <annotation>COCO</annotation>
        <image>flickr</image>
        <flickrid>NULL</flickrid>
    </source>
    <owner>
        <flickrid>NULL</flickrid>
        <name>company</name>
    </owner>
    <size>
        <width>%d</width>
        <height>%d</height>
        <depth>%d</depth>
    </size>
    <segmented>0</segmented>
"""
objstr = """\
    <object>
        <name>%s</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>%d</xmin>
            <ymin>%d</ymin>
            <xmax>%d</xmax>
            <ymax>%d</ymax>
        </bndbox>
    </object>
"""

tailstr = '''\
</annotation>
'''

#if the dir is not exists,make it,else delete it
def mkr(path):
    if os.path.exists(path):
        shutil.rmtree(path)
        os.mkdir(path)
    else:
        os.mkdir(path)
mkr(img_dir)
mkr(anno_dir)
def id2name(coco):
    classes=dict()
    for cls in coco.dataset['categories']:
        classes[cls['id']]=cls['name']
    return classes

def write_xml(anno_path,head, objs, tail):
    f = open(anno_path, "w")
    f.write(head)
    for obj in objs:
        f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
    f.write(tail)


def save_annotations_and_imgs(coco,dataset,filename,objs):
    #eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xml
    anno_path=anno_dir+filename[:-3]+'xml'
    img_path=dataDir+dataset+'/'+filename
    print(img_path)
    dst_imgpath=img_dir+filename

    img=cv2.imread(img_path)
    if (img.shape[2] == 1):
        print(filename + " not a RGB image")
        return
    shutil.copy(img_path, dst_imgpath)

    head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
    tail = tailstr
    write_xml(anno_path,head, objs, tail)


def showimg(coco,dataset,img,classes,cls_id,show=True):
    global dataDir
    I=Image.open('%s/%s/%s'%(dataDir,dataset,img['file_name']))
    #通過id,得到註釋的資訊
    annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
    # print(annIds)
    anns = coco.loadAnns(annIds)
    # print(anns)
    # coco.showAnns(anns)
    objs = []
    for ann in anns:
        class_name=classes[ann['category_id']]
        if class_name in classes_names:
            print(class_name)
            if 'bbox' in ann:
                bbox=ann['bbox']
                xmin = int(bbox[0])
                ymin = int(bbox[1])
                xmax = int(bbox[2] + bbox[0])
                ymax = int(bbox[3] + bbox[1])
                obj = [class_name, xmin, ymin, xmax, ymax]
                objs.append(obj)
                draw = ImageDraw.Draw(I)
                draw.rectangle([xmin, ymin, xmax, ymax])
    if show:
        plt.figure()
        plt.axis('off')
        plt.imshow(I)
        plt.show()

    return objs

for dataset in datasets_list:
    #./COCO/annotations/instances_train2014.json
    annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)

    #COCO API for initializing annotated data
    coco = COCO(annFile)
    '''
    COCO 物件建立完畢後會輸出如下資訊:
    loading annotations into memory...
    Done (t=0.81s)
    creating index...
    index created!
    至此, json 指令碼解析完畢, 並且將圖片和對應的標註資料關聯起來.
    '''
    #show all classes in coco
    classes = id2name(coco)
    print(classes)
    #[1, 2, 3, 4, 6, 8]
    classes_ids = coco.getCatIds(catNms=classes_names)
    print(classes_ids)
    for cls in classes_names:
        #Get ID number of this class
        cls_id=coco.getCatIds(catNms=[cls])
        img_ids=coco.getImgIds(catIds=cls_id)
        print(cls,len(img_ids))
        # imgIds=img_ids[0:10]
        for imgId in tqdm(img_ids):
            img = coco.loadImgs(imgId)[0]
            filename = img['file_name']
            # print(filename)
            objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
            print(objs)
            save_annotations_and_imgs(coco, dataset, filename, objs)