bzoj3667 Rabin-Miller算法
阿新 • • 發佈:2017-05-29
sin const pro pla mes zoj esp problem nes
傳送門:http://www.lydsy.com/JudgeOnline/problem.php?id=3667
【題解】
PollardRho,講解見http://www.cnblogs.com/galaxies/p/bzoj4802.html
# include <stdio.h> # include <string.h> # include <iostream> # include <algorithm> // # include <bits/stdc++.h> using namespace std; typedef long long ll; typedefView Codelong double ld; typedef unsigned long long ull; const int M = 3e4 + 10; # define RG register # define ST static ll n; inline ll mul(ll a, ll b, ll P) { a %= P, b %= P; ll ret = 0; while(b) { if(b&1) { ret = ret + a; if(ret >= P) ret -= P; } a<<= 1; if(a >= P) a -= P; b >>= 1; } return ret; } inline ll pwr(ll a, ll b, ll P) { a %= P; ll ret = 1; while(b) { if(b&1) ret = mul(ret, a, P); a = mul(a, a, P); b >>= 1; } return ret; } namespace Millar_Rabin {const int Prime[] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29}; const int PN = 10; inline bool witness(int pr, ll res, int times, ll n) { ll p = pwr((ll)pr, res, n); for (int i=0; i<times; ++i) { if(p == 1) return 0; if(p == n-1) return 0; p = mul(p, p, n); } return 1; } inline bool main(ll n) { if(n <= 1) return 0; for (int i=1; i<=PN; ++i) { if(n == Prime[i]) return 1; if(n % Prime[i] == 0) return 0; } ll p = n-1; int times = 0; while(!(p&1)) { times ++; p >>= 1; } for (int i=1; i<=PN; ++i) if(witness(Prime[i], p, times, n)) return false; return true; } } namespace Pollard_Rho { int p[M], pn; inline void PollardRho(ll n) { if(Millar_Rabin::main(n)) { p[++pn] = n; return ; } ll a, b, c, del; while(1) { c = rand() % n; a = b = rand() % n; b = (mul(b, b, n) + c) % n; while(a != b) { del = __gcd(abs(a-b), n); if(del > 1 && del < n) { PollardRho(del); PollardRho(n/del); return ; } a = (mul(a, a, n) + c) % n; b = (mul(b, b, n) + c) % n; b = (mul(b, b, n) + c) % n; } } } inline void main(ll n) { if(Millar_Rabin::main(n)) { cout << "Prime" << endl; return ; } pn = 0; PollardRho(n); sort(p+1, p+pn+1); cout << p[pn] << endl; } } int main() { srand(20001130); int T; cin >> T; while(T--) { cin >> n; Pollard_Rho::main(n); } return 0; }
bzoj3667 Rabin-Miller算法