tensorflow 1.0 學習:模型的保存與恢復(Saver)
將訓練好的模型參數保存起來,以便以後進行驗證或測試,這是我們經常要做的事情。tf裏面提供模型保存的是tf.train.Saver()模塊。
模型保存,先要創建一個Saver對象:如
saver=tf.train.Saver()
在創建這個Saver對象的時候,有一個參數我們經常會用到,就是 max_to_keep 參數,這個是用來設置保存模型的個數,默認為5,即 max_to_keep=5,保存最近的5個模型。如果你想每訓練一代(epoch)就想保存一次模型,則可以將 max_to_keep設置為None或者0,如:
saver=tf.train.Saver(max_to_keep=0)
但是這樣做除了多占用硬盤,並沒有實際多大的用處,因此不推薦。
當然,如果你只想保存最後一代的模型,則只需要將max_to_keep設置為1即可,即
saver=tf.train.Saver(max_to_keep=1)
創建完saver對象後,就可以保存訓練好的模型了,如:
saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=step)
第一個參數sess,這個就不用說了。第二個參數設定保存的路徑和名字,第三個參數將訓練的次數作為後綴加入到模型名字中。
saver.save(sess, ‘my-model‘, global_step=0) ==> filename: ‘my-model-0‘
saver.save(sess, ‘my-model‘, global_step=1000) ==> filename: ‘my-model-1000‘
看一個mnist實例:
# -*- coding: utf-8 -*- """ Created on Sun Jun 4 10:29:48 2017 @author: Administrator """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) x = tf.placeholder(tf.float32, [None, 784]) y_=tf.placeholder(tf.int32,[None,]) dense1 = tf.layers.dense(inputs=x, units=1024, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) logits= tf.layers.dense(inputs=dense2, units=10, activation=None, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits) train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess=tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver=tf.train.Saver(max_to_keep=1) for i in range(100): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys}) val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc)) saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1) sess.close()
代碼中紅色部分就是保存模型的代碼,雖然我在每訓練完一代的時候,都進行了保存,但後一次保存的模型會覆蓋前一次的,最終只會保存最後一次。因此我們可以節省時間,將保存代碼放到循環之外(僅適用max_to_keep=1,否則還是需要放在循環內).
在實驗中,最後一代可能並不是驗證精度最高的一代,因此我們並不想默認保存最後一代,而是想保存驗證精度最高的一代,則加個中間變量和判斷語句就可以了。
saver=tf.train.Saver(max_to_keep=1) max_acc=0 for i in range(100): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys}) val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc)) if val_acc>max_acc: max_acc=val_acc saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1) sess.close()
如果我們想保存驗證精度最高的三代,且把每次的驗證精度也隨之保存下來,則我們可以生成一個txt文件用於保存。
saver=tf.train.Saver(max_to_keep=3) max_acc=0 f=open(‘ckpt/acc.txt‘,‘w‘) for i in range(100): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys}) val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc)) f.write(str(i+1)+‘, val_acc: ‘+str(val_acc)+‘\n‘) if val_acc>max_acc: max_acc=val_acc saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1) f.close() sess.close()
模型的恢復用的是restore()函數,它需要兩個參數restore(sess, save_path),save_path指的是保存的模型路徑。我們可以使用tf.train.latest_checkpoint()來自動獲取最後一次保存的模型。如:
model_file=tf.train.latest_checkpoint(‘ckpt/‘) saver.restore(sess,model_file)
則程序後半段代碼我們可以改為:
sess=tf.InteractiveSession() sess.run(tf.global_variables_initializer()) is_train=False saver=tf.train.Saver(max_to_keep=3) #訓練階段 if is_train: max_acc=0 f=open(‘ckpt/acc.txt‘,‘w‘) for i in range(100): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys}) val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc)) f.write(str(i+1)+‘, val_acc: ‘+str(val_acc)+‘\n‘) if val_acc>max_acc: max_acc=val_acc saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1) f.close() #驗證階段 else: model_file=tf.train.latest_checkpoint(‘ckpt/‘) saver.restore(sess,model_file) val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print(‘val_loss:%f, val_acc:%f‘%(val_loss,val_acc)) sess.close()
標紅的地方,就是與保存、恢復模型相關的代碼。用一個bool型變量is_train來控制訓練和驗證兩個階段。
整個源程序:
# -*- coding: utf-8 -*- """ Created on Sun Jun 4 10:29:48 2017 @author: Administrator """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=False) x = tf.placeholder(tf.float32, [None, 784]) y_=tf.placeholder(tf.int32,[None,]) dense1 = tf.layers.dense(inputs=x, units=1024, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) logits= tf.layers.dense(inputs=dense2, units=10, activation=None, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), kernel_regularizer=tf.nn.l2_loss) loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits) train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) sess=tf.InteractiveSession() sess.run(tf.global_variables_initializer()) is_train=True saver=tf.train.Saver(max_to_keep=3) #訓練階段 if is_train: max_acc=0 f=open(‘ckpt/acc.txt‘,‘w‘) for i in range(100): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys}) val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print(‘epoch:%d, val_loss:%f, val_acc:%f‘%(i,val_loss,val_acc)) f.write(str(i+1)+‘, val_acc: ‘+str(val_acc)+‘\n‘) if val_acc>max_acc: max_acc=val_acc saver.save(sess,‘ckpt/mnist.ckpt‘,global_step=i+1) f.close() #驗證階段 else: model_file=tf.train.latest_checkpoint(‘ckpt/‘) saver.restore(sess,model_file) val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print(‘val_loss:%f, val_acc:%f‘%(val_loss,val_acc)) sess.close()View Code
參考文章:http://blog.csdn.net/u011500062/article/details/51728830
tensorflow 1.0 學習:模型的保存與恢復(Saver)