1. 程式人生 > >tensorflow 1.0 學習:用別人訓練好的模型來進行圖像分類

tensorflow 1.0 學習:用別人訓練好的模型來進行圖像分類

ima ppi gin 什麽 dir targe spl flow blog

谷歌在大型圖像數據庫ImageNet上訓練好了一個Inception-v3模型,這個模型我們可以直接用來進來圖像分類。

下載地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip

下載完解壓後,得到幾個文件:

其中的classify_image_graph_def.pb 文件就是訓練好的Inception-v3模型。

imagenet_synset_to_human_label_map.txt是類別文件。

隨機找一張圖片:如

技術分享

對這張圖片進行識別,看它屬於什麽類?

代碼如下:先創建一個類NodeLookup來將softmax概率值映射到標簽上。

然後創建一個函數create_graph()來讀取模型。

最後讀取圖片進行分類識別:

# -*- coding: utf-8 -*-

import tensorflow as tf
import numpy as np
import re
import os

model_dir=D:/tf/model/
image=d:/cat.jpg


#將類別ID轉換為人類易讀的標簽
class NodeLookup(object):
  def __init__(self,
               label_lookup_path=None,
               uid_lookup_path
=None): if not label_lookup_path: label_lookup_path = os.path.join( model_dir, imagenet_2012_challenge_label_map_proto.pbtxt) if not uid_lookup_path: uid_lookup_path = os.path.join( model_dir, imagenet_synset_to_human_label_map.txt) self.node_lookup
= self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path): if not tf.gfile.Exists(uid_lookup_path): tf.logging.fatal(File does not exist %s, uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): tf.logging.fatal(File does not exist %s, label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} p = re.compile(r[n\d]*[ \S,]*) for line in proto_as_ascii_lines: parsed_items = p.findall(line) uid = parsed_items[0] human_string = parsed_items[2] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith( target_class:): target_class = int(line.split(: )[1]) if line.startswith( target_class_string:): target_class_string = line.split(: )[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal(Failed to locate: %s, val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id): if node_id not in self.node_lookup: return ‘‘ return self.node_lookup[node_id] #讀取訓練好的Inception-v3模型來創建graph def create_graph(): with tf.gfile.FastGFile(os.path.join( model_dir, classify_image_graph_def.pb), rb) as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name=‘‘) #讀取圖片 image_data = tf.gfile.FastGFile(image, rb).read() #創建graph create_graph() sess=tf.Session() #Inception-v3模型的最後一層softmax的輸出 softmax_tensor= sess.graph.get_tensor_by_name(softmax:0) #輸入圖像數據,得到softmax概率值(一個shape=(1,1008)的向量) predictions = sess.run(softmax_tensor,{DecodeJpeg/contents:0: image_data}) #(1,1008)->(1008,) predictions = np.squeeze(predictions) # ID --> English string label. node_lookup = NodeLookup() #取出前5個概率最大的值(top-5) top_5 = predictions.argsort()[-5:][::-1] for node_id in top_5: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] print(%s (score = %.5f) % (human_string, score)) sess.close()

最後輸出:

tiger cat (score = 0.40316)
Egyptian cat (score = 0.21686)
tabby, tabby cat (score = 0.21348)
lynx, catamount (score = 0.01403)
Persian cat (score = 0.00394)

tensorflow 1.0 學習:用別人訓練好的模型來進行圖像分類