1. 程式人生 > >cf468B Two Sets

cf468B Two Sets

ins names print small esc clas contains nts pla

Little X has n distinct integers: p1,?p2,?...,?pn. He wants to divide all of them into two sets A and B. The following two conditions must be satisfied:

  • If number x belongs to set A, then number a?-?x must also belong to set A.
  • If number x belongs to set B, then number b?-?x must also belong to set B
    .

Help Little X divide the numbers into two sets or determine that it‘s impossible.

Input

The first line contains three space-separated integers n,?a,?b (1?≤?n?≤?105; 1?≤?a,?b?≤?109). The next line contains n space-separated distinct integers p1,?p2,?...,?pn (1?≤?pi?≤?109).

Output

If there is a way to divide the numbers into two sets, then print "YES" in the first line. Then print n

integers: b1,?b2,?...,?bn (bi equals either 0, or 1), describing the division. If bi equals to 0, then pi belongs to set A, otherwise it belongs to set B.

If it‘s impossible, print "NO" (without the quotes).

Examples Input
4 5 9
2 3 4 5
Output
YES
0 0 1 1
Input
3 3 4
1 2 4
Output
NO
Note

It‘s OK if all the numbers are in the same set, and the other one is empty.

如果A中有了一個x,那麽A中也要有a-x,說明(逆否命題)如果A中沒有a-x,也就沒有x。即如果B中有a-x,就有x。因為不在A就在B咯

所以這個A還是B無所謂的,重要的是x和a-x一定在同一集合,x和b-x一定在同一集合

因此裸並查集,只要被並起來的數字有一個不能在A,那麽這一群都不能在A

技術分享
 1 #include<bits/stdc++.h>
 2 #define LL long long
 3 using namespace std;
 4 LL n,a,b;
 5 inline LL read()
 6 {
 7     LL x=0,f=1;char ch=getchar();
 8     while(ch<0||ch>9){if(ch==-)f=-1;ch=getchar();}
 9     while(ch>=0&&ch<=9){x=x*10+ch-0;ch=getchar();}
10     return x*f;
11 }
12 struct po{LL x;int rnk;}p[100010];
13 bool operator <(po a,po b){return a.x<b.x;}
14 int fa[100010];
15 int mrk[100010];
16 inline int getfa(int x){return fa[x]==x?x:fa[x]=getfa(fa[x]);}
17 map<LL,LL>mp;
18 int main()
19 {
20     n=read();a=read();b=read();
21     for (int i=1;i<=n;i++)
22     {
23         p[i].x=read();
24         p[i].rnk=i;
25     }
26     sort(p+1,p+n+1);
27     for(int i=1;i<=n;i++)mp[p[i].x]=p[i].rnk,fa[i]=i,mrk[i]=3;
28     for(int i=1;i<=n;i++)
29     {
30         if (mp[a-p[i].x])
31         {
32             int pos=getfa(mp[a-p[i].x]),pos2=getfa(p[i].rnk);
33             if (pos!=pos2)fa[pos2]=pos;
34         }
35         if (mp[b-p[i].x])
36         {
37             int pos=getfa(mp[b-p[i].x]),pos2=getfa(p[i].rnk);
38             if (pos!=pos2)fa[pos2]=pos;
39         }
40     }
41     for (int i=1;i<=n;i++)
42     {
43         int ff=getfa(p[i].rnk);
44         if (!mp[a-p[i].x])mrk[ff]&=1;
45         if (!mp[b-p[i].x])mrk[ff]&=2;
46     }
47     for (int i=1;i<=n;i++)
48         if (mrk[getfa(i)]==0){puts("NO");return 0;}
49         else if (mrk[getfa(i)]==3)mrk[getfa(i)]=1;
50     puts("YES");
51     for (int i=1;i<=n;i++)printf("%d ",mrk[getfa(i)]==2?0:1);
52     puts("");
53 }
cf468B

cf468B Two Sets