POJ 3264 Balanced Lineup
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 33094 | Accepted: 15552 | |
Case Time Limit: 2000MS |
Description
For the daily milking, Farmer John‘s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Line 1: Two space-separated integers, N and Q.Lines 2..N
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0
打算用兩種方法做。順便差別一下,RMQ和線段樹的差別。他們都都說RMQ比線段樹好,我發現時間也差不了多少,盡管都沒優化
AC代碼例如以下:
線段樹。
///線段樹 2250MS 2404K #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #define M 50010 #define inf 100000000 using namespace std; struct H { int l,r,maxx,minn; }trees[4*M]; int n,m; int num[M]; void build_trees(int jd ,int l,int r) { trees[jd].l=l;trees[jd].r=r; if(l==r) { trees[jd].maxx=num[l]; trees[jd].minn=num[l]; return ; } int mid = (l+r)/2; build_trees(jd*2,l,mid); build_trees(jd*2+1,mid+1,r); trees[jd].maxx=max(trees[jd*2].maxx,trees[jd*2+1].maxx); trees[jd].minn=min(trees[jd*2].minn,trees[jd*2+1].minn); } int query_max(int jd,int l,int r) { int ans=0; if(l<=trees[jd].l&&r>=trees[jd].r) return trees[jd].maxx; int mid = (trees[jd].l+trees[jd].r)/2; if(l<=mid) ans=max(ans,query_max(jd*2,l,r)) ; if(r>mid) ans=max(ans,query_max(jd*2+1,l,r)); return ans; } int query_min(int jd,int l,int r) { int ans=inf; if(l<=trees[jd].l&&r>=trees[jd].r) return trees[jd].minn; int mid = (trees[jd].l+trees[jd].r)/2; if(l<=mid) ans=min(ans,query_min(jd*2,l,r)) ; if(r>mid) ans=min(ans,query_min(jd*2+1,l,r)); return ans; } int main() { int i,j; int a,b; while(~scanf("%d%d",&n,&m)) { memset(num,0,sizeof num); for(i=1;i<=n;i++) scanf("%d",&num[i]); build_trees(1,1,n); for(i=1;i<=m;i++) { scanf("%d%d",&a,&b); printf("%d\n",query_max(1,a,b)-query_min(1,a,b)); } } return 0; }
RMQ!。!
///RMQ 1813MS 12100K #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #define M 50010 #define inf 100000000 using namespace std; int n,m; int num[M]; int dp1[M][30],dp2[M][30]; void RMQ_min() { int i,j; memset(dp1,0,sizeof dp1); for(i=1;i<=n;i++) dp1[i][0]=num[i]; for(j=1;1<<j<=n;j++) for(i=1;i+(1<<j)-1<=n;i++) dp1[i][j]=min(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]); } void RMQ_max() { int i,j; memset(dp2,0,sizeof dp2); for(i=1;i<=n;i++) dp2[i][0]=num[i]; for(j=1;1<<j<=n;j++) for(i=1;i+(1<<j)-1<=n;i++) dp2[i][j]=max(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]); } int rmq_min(int l,int r) { int i,j; int k=0; while(1<<(k+1)<=r-l+1) k++; return min(dp1[l][k],dp1[r-(1<<k)+1][k]); } int rmq_max(int l,int r) { int i,j; int k=0; while(1<<(k+1)<=r-l+1) k++; return max(dp2[l][k],dp2[r-(1<<k)+1][k]); } int main() { int i,j; int a,b; while(~scanf("%d%d",&n,&m)) { for(i=1;i<=n;i++) scanf("%d",&num[i]); RMQ_min(); RMQ_max(); for(i=1;i<=m;i++) { scanf("%d%d",&a,&b); printf("%d\n",rmq_max(a,b)-rmq_min(a,b)); } } return 0; }
POJ 3264 Balanced Lineup