BZOJ 3223 Tyvj 1729 文藝平衡樹
3223: Tyvj 1729 文藝平衡樹
Description
您需要寫一種數據結構(可參考題目標題),來維護一個有序數列,其中需要提供以下操作:翻轉一個區間,例如原有序序列是5 4 3 2 1,翻轉區間是[2,4]的話,結果是5 2 3 4 1
Input
第一行為n,m n表示初始序列有n個數,這個序列依次是(1,2……n-1,n) m表示翻轉操作次數
接下來m行每行兩個數[l,r] 數據保證 1<=l<=r<=n
Output
輸出一行n個數字,表示原始序列經過m次變換後的結果
Sample Input
5 31 3
1 3
1 4
Sample Output
4 3 2 1 5HINT
N,M<=100000
為了調出一個正常的splay,實在是調了太久太久。
不過至少調出來了嘛!?
就是最普通的平衡樹,而且此題還不用insert和remove。所以,就是build,splay,merge和split,再加上rev標記和pushdown。splay的cmp與treap的cmp不同,treap的cmp是按值的,而splay是按siz的(因為是下標標號)。所以說,insert的時候有k還有x(x似乎無用)。額,似乎很顯然。而進入ch[1]的時候,一定不能忘了先把k減下去。
關於splay操作,按理是雙旋的,但我寫了隨機比較單旋和雙旋,似乎沒有什麽大區別。事實似乎也是這樣。
splay單旋 | 2776 kb | 2184 ms | 2351 B |
splay雙旋 | 2776 kb | 2004 ms | 2559 B |
但是,確實有理論證明。雙旋可以有效地“本質化地”優化樹的形態。
關於split和merge,劉汝佳建議,使用虛擬節點,但本人嫌麻煩,只需要再特判一下。因為split是把樹o的前k個分入left,之後的分入right,當k為0時就不用旋也不能旋了。而且merge是把left變成“右空樹”再連上 right,當left為null時就不用旋也不能旋了。第一次感覺null這麽方便。
而rev標記,是只要訪問就該pushdown了,無論是insert,remove,還是splay,print,如果忘了會出大事。
而maintain(update)呢?只要樹形態變化就應該做。也就是build,insert,remove,rotate,還有merge和split。註意splay內部並不需要maintain,因為splay本身不過是一堆rotate。而remove時,maintain需要註意判斷null,不然一旦亂搞,這棵樹就完了。而null時,一般都是o->ch[0]==null&&o->ch[1]==null,在d==-1時if(o->ch[0]==null) o=o->ch[1];這樣是很明顯的。
我們在進行區間操作時,一般都會把操作的區間split出來,防止其他元素糾結,之後在merge回去。此題無需關心insert,但是如果有insert,插入之後還應splay一下,只有這樣才能擺脫鏈的詛咒。
第一次敲splay,真的很苦啊。
1 /************************************************************** 2 Problem: 3223 3 User: Doggu 4 Language: C++ 5 Result: Accepted 6 Time:2184 ms 7 Memory:2776 kb 8 ****************************************************************/ 9 10 #include <cstdio> 11 #include <algorithm> 12 const int N = 100010; 13 struct Node { 14 int val, siz; 15 bool rev; 16 Node *ch[2]; 17 int cmp(int k) { 18 if(k<=ch[0]->siz) return 0; 19 if(k<=ch[0]->siz+1) return -1; 20 return 1; 21 } 22 void pushdown() {if(rev) { 23 std::swap(ch[0],ch[1]); 24 ch[0]->rev^=1; 25 ch[1]->rev^=1; 26 rev = 0; 27 }} 28 void maintain() { 29 siz=ch[0]->siz+ch[1]->siz+1; 30 } 31 }pool[N], *tail=pool, *null=pool, *root; 32 //int aa[N]; 33 void rotate(Node *&o,int d) { 34 Node *k=o->ch[d^1];o->ch[d^1]=k->ch[d];k->ch[d]=o; 35 o->maintain();k->maintain();o=k; 36 } 37 Node *build(int lf,int rg) { 38 Node *o=++tail; 39 int mid=(lf+rg)>>1; 40 o->val=mid;//aa[mid]; 41 o->ch[0]=(lf<=mid-1)?build(lf,mid-1):null; 42 o->ch[1]=(mid+1<=rg)?build(mid+1,rg):null; 43 o->maintain(); 44 return o; 45 } 46 void splay(Node *&o,int k) { 47 o->pushdown(); 48 int d=o->cmp(k); 49 if(d==1) k-=o->ch[0]->siz+1; 50 if(d!=-1) splay(o->ch[d],k), rotate(o,d^1); 51 } 52 Node *merge(Node *left,Node *right) { 53 if(left==null) return right; 54 splay(left,left->siz); 55 left->ch[1]=right;left->maintain(); 56 return left; 57 } 58 void split(Node *o,int k,Node *&left,Node *&right) { 59 if(k==0) left=null, right=o; 60 else { 61 splay(o,k); 62 left=o;right=o->ch[1]; 63 o->ch[1]=null;left->maintain(); 64 } 65 } 66 void print(Node *o) { 67 if(o==null) return ; 68 o->pushdown(); 69 print(o->ch[0]); 70 printf("%d ",o->val); 71 print(o->ch[1]); 72 } 73 int main() { 74 null->ch[0]=null->ch[1]=null; 75 int n, q, lf, rg; 76 scanf("%d%d",&n,&q); 77 //for( int i = 1; i <= n; i++ ) scanf("%d",&aa[i]); 78 root=build(1,n); 79 //printf("ROOT_SEQ:");print(root);printf("\n"); 80 while(q--) { 81 scanf("%d%d",&lf,&rg); 82 Node *left, *mid, *right, *o; 83 split(root,rg,mid,right); 84 split(mid,lf-1,left,mid); 85 //printf("LEFT_SEQ:");print(left);printf("\n"); 86 //printf("MID_SEQ:");print(mid);printf("\n"); 87 //printf("RIGHT_SEQ:");print(right);printf("\n"); 88 mid->rev^=1; 89 root=merge(merge(left,mid),right); 90 //printf("ROOT_SEQ:");print(root);printf("\n"); 91 } 92 print(root);printf("\n"); 93 return 0; 94 } 95單旋
1 /************************************************************** 2 Problem: 3223 3 User: Doggu 4 Language: C++ 5 Result: Accepted 6 Time:2004 ms 7 Memory:2776 kb 8 ****************************************************************/ 9 10 #include <cstdio> 11 #include <algorithm> 12 const int N = 100010; 13 struct Node { 14 int val, siz; 15 bool rev; 16 Node *ch[2]; 17 int cmp(int k) { 18 if(k<=ch[0]->siz) return 0; 19 if(k<=ch[0]->siz+1) return -1; 20 return 1; 21 } 22 void pushdown() {if(rev) { 23 std::swap(ch[0],ch[1]); 24 ch[0]->rev^=1; 25 ch[1]->rev^=1; 26 rev = 0; 27 }} 28 void maintain() { 29 siz=ch[0]->siz+ch[1]->siz+1; 30 } 31 }pool[N], *tail=pool, *null=pool, *root; 32 //int aa[N]; 33 void rotate(Node *&o,int d) { 34 Node *k=o->ch[d^1];o->ch[d^1]=k->ch[d];k->ch[d]=o; 35 o->maintain();k->maintain();o=k; 36 } 37 Node *build(int lf,int rg) { 38 Node *o=++tail; 39 int mid=(lf+rg)>>1; 40 o->val=mid;//aa[mid]; 41 o->ch[0]=(lf<=mid-1)?build(lf,mid-1):null; 42 o->ch[1]=(mid+1<=rg)?build(mid+1,rg):null; 43 o->maintain(); 44 return o; 45 } 46 void splay(Node *&o,int k) { 47 o->pushdown(); 48 int d=o->cmp(k); 49 if(d==1) k-=o->ch[0]->siz+1; 50 if(d!=-1) { 51 Node *p=o->ch[d]; 52 p->pushdown(); 53 int d2=p->cmp(k); 54 int k2=(d2==0?k:k-p->ch[0]->siz-1); 55 if(d2!=-1) { 56 splay(p->ch[d2],k2); 57 if(d==d2) rotate(o,d^1);else rotate(o->ch[d],d); 58 } 59 rotate(o,d^1); 60 } 61 } 62 Node *merge(Node *left,Node *right) { 63 if(left==null) return right; 64 splay(left,left->siz); 65 left->ch[1]=right;left->maintain(); 66 return left; 67 } 68 void split(Node *o,int k,Node *&left,Node *&right) { 69 if(k==0) left=null, right=o; 70 else { 71 splay(o,k); 72 left=o;right=o->ch[1]; 73 o->ch[1]=null;left->maintain(); 74 } 75 } 76 void print(Node *o) { 77 if(o==null) return ; 78 o->pushdown(); 79 print(o->ch[0]); 80 printf("%d ",o->val); 81 print(o->ch[1]); 82 } 83 int main() { 84 null->ch[0]=null->ch[1]=null; 85 int n, q, lf, rg; 86 scanf("%d%d",&n,&q); 87 //for( int i = 1; i <= n; i++ ) scanf("%d",&aa[i]); 88 root=build(1,n); 89 //printf("ROOT_SEQ:");print(root);printf("\n"); 90 while(q--) { 91 scanf("%d%d",&lf,&rg); 92 Node *left, *mid, *right, *o; 93 split(root,rg,mid,right); 94 split(mid,lf-1,left,mid); 95 //printf("LEFT_SEQ:");print(left);printf("\n"); 96 //printf("MID_SEQ:");print(mid);printf("\n"); 97 //printf("RIGHT_SEQ:");print(right);printf("\n"); 98 mid->rev^=1; 99 root=merge(merge(left,mid),right); 100 //printf("ROOT_SEQ:");print(root);printf("\n"); 101 } 102 print(root);printf("\n"); 103 return 0; 104 } 105雙旋
BZOJ 3223 Tyvj 1729 文藝平衡樹