day21:三元表達式、列表解析、生成器
一、三元表達式:
條件 if 1>2 左邊為真值,右邊為假值
res = True if 1 > 2 else False
>>> 3 if 3>2 else 10 3 >>> 3 if 3>4 else 10 10 >>> 3+2 if 3>0 else 3-1 5 >>> 3+2 if 3>0 and 3>4 else 3-1 2
二、列表解析
1 s=‘hello‘ 2 res=[i.upper() for i in s] 3 print(res) 4 5 [‘H‘,‘E‘,‘L‘,‘L‘,‘O‘]
l=[1,31,73,84,57,22] l_new=[] #一般寫法 for i in l: if i > 50: l_new.append(i) print(l_new) #解析式寫法 res=[i for i in l if i > 50] print(res)
for i in obj1: if 條件1: for i in obj2: if 條件2: for i in obj3: if 條件3: ... l=[1,31,73,84,57,22] print([i for i in l if i > 50]) print([i for i in l if i < 50]) print([i for i in l if i > 20 and i < 50])
三、生成器
通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素占用的空間都白白浪費了。
所以,如果列表元素可以按照某種算法推算出來,那我們是否可以在循環的過程中不斷推算出後續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。
要創建一個generator,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[]
改成()
,就創建了一個generator:
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
創建L
和g
的區別僅在於最外層的[]
和()
,L
是一個list,而g
是一個generator。
我們可以直接打印出list的每一個元素,但我們怎麽打印出generator的每一個元素呢?
如果要一個一個打印出來,可以通過next()
函數獲得generator的下一個返回值:
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
我們講過,generator保存的是算法,每次調用next(g)
,就計算出g
的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration
的錯誤。
當然,上面這種不斷調用next(g)
實在是太變態了,正確的方法是使用for
循環,因為generator也是可叠代對象:
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81
所以,我們創建了一個generator後,基本上永遠不會調用next()
,而是通過for
循環來叠代它,並且不需要關心StopIteration
的錯誤。
generator非常強大。如果推算的算法比較復雜,用類似列表生成式的for
循環無法實現的時候,還可以用函數來實現。
比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契數列用列表生成式寫不出來,但是,用函數把它打印出來卻很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return ‘done‘
註意,賦值語句:
a, b = b, a + b
相當於:
t = (b, a + b) # t是一個tuple a = t[0] b = t[1]
但不必顯式寫出臨時變量t就可以賦值。
上面的函數可以輸出斐波那契數列的前N個數:
>>> fib(6) 1 1 2 3 5 8 ‘done‘
仔細觀察,可以看出,fib
函數實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函數和generator僅一步之遙。要把fib
函數變成generator,只需要把print(b)
改為yield b
就可以了:
def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return ‘done‘
這就是定義generator的另一種方法。
如果一個函數定義中包含yield
關鍵字,那麽這個函數就不再是一個普通函數,而是一個generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
這裏,最難理解的就是generator和函數的執行流程不一樣。函數是順序執行,遇到return
語句或者最後一行函數語句就返回。
而變成generator的函數,在每次調用next()
的時候執行,遇到yield
語句返回,再次執行時從上次返回的yield
語句處繼續執行。
舉個簡單的例子,定義一個generator,依次返回數字1,3,5:
def odd(): print(‘step 1‘) yield 1 print(‘step 2‘) yield(3) print(‘step 3‘) yield(5)
調用該generator時,首先要生成一個generator對象,然後用next()
函數不斷獲得下一個返回值:
>>> o = odd() >>> next(o) step 1 1 >>> next(o) step 2 3 >>> next(o) step 3 5 >>> next(o) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
可以看到,odd
不是普通函數,而是generator,在執行過程中,遇到yield
就中斷,下次又繼續執行。執行3次yield
後,已經沒有yield
可以執行了,所以,第4次調用next(o)
就報錯。
回到fib
的例子,我們在循環過程中不斷調用yield
,就會不斷中斷。當然要給循環設置一個條件來退出循環,不然就會產生一個無限數列出來。
同樣的,把函數改成generator後,我們基本上從來不會用next()
來獲取下一個返回值,而是直接使用for
循環來叠代:
>>> for n in fib(6): ... print(n) ... 1 1 2 3 5 8
但是用for
循環調用generator時,發現拿不到generator的return
語句的返回值。如果想要拿到返回值,必須捕獲StopIteration
錯誤,返回值包含在StopIteration
的value
中:
>>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print(‘g:‘, x) ... except StopIteration as e: ... print(‘Generator return value:‘, e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done
生成器就是叠代器
yield的功能:
1.與return類似,都可以返回值,但不一樣的地方在於yield返回多次值,而return只能返回一次值
2.為函數封裝好了__iter__和__next__方法,把函數的執行結果做成了叠代器
3.遵循叠代器的取值方式obj.__next__(),觸發的函數的執行,函數暫停與再繼續的狀態都是由yield保存的
d={‘a‘:1,‘b‘:2,‘c‘:3} obj=d.__iter__() while True: try: i=obj.__next__() print(i) except StopIteration: break
def foo(): print(‘first‘) yield 1 print(‘second‘) yield 2 print(‘third‘) yield 3 print(‘fouth‘) g=foo() for i in g: print(i)
import time def countdown(n): print(‘start---->‘) while n>=0: yield n time.sleep(1) n-=1 print(‘stop---->‘) g=countdown(5) for i in g: print(i)
動態查看文件最後一行,並過濾顯示。
import time def tail(filepath,encoding=‘utf-8‘): with open(filepath,encoding=encoding) as f: f.seek(0,2) while True: line=f.readline() if line: yield line else: time.sleep(0.5) def grep(lines,pattern): for line in lines: if pattern in line: yield line g1=tail(‘day9.txt‘) g2=grep(g1, ‘error‘) g3=grep(g2, ‘404‘) for i in g3: print(i)
day21:三元表達式、列表解析、生成器