1. 程式人生 > >day21:三元表達式、列表解析、生成器

day21:三元表達式、列表解析、生成器

使用 叠代 發現 pan hello 內存 fin 生成式 nes

一、三元表達式:

條件 if 1>2  左邊為真值,右邊為假值

res = True if 1 > 2 else False

技術分享
>>> 3 if 3>2 else 10
3
>>> 3 if 3>4 else 10
10
>>> 3+2 if 3>0 else 3-1
5
>>> 3+2 if 3>0 and 3>4 else 3-1
2
技術分享

二、列表解析

1 s=‘hello‘
2 res=[i.upper() for i in s]
3 print(res)
4 
5 [‘H‘,‘E‘,‘L‘,‘L‘,‘O‘]
技術分享
l=[1,31,73,84,57,22]
l_new=[]
#一般寫法
for i in l:
    if i > 50:
        l_new.append(i)
print(l_new)
#解析式寫法
res=[i for i in l if i > 50]
print(res)
技術分享 技術分享
for i in obj1:
    if 條件1:
        for i in obj2:
            if 條件2:
                for i in obj3:
                    if 條件3:
                        ...
l=[1,31,73,84,57,22]
print([i for i in l if i > 50])
print([i for i in l if i < 50])
print([i for i in l if i > 20 and i < 50])
技術分享

三、生成器

通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那後面絕大多數元素占用的空間都白白浪費了。

所以,如果列表元素可以按照某種算法推算出來,那我們是否可以在循環的過程中不斷推算出後續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。

要創建一個generator,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[]改成(),就創建了一個generator:

技術分享
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
技術分享

創建Lg的區別僅在於最外層的[]()L是一個list,而g是一個generator。

我們可以直接打印出list的每一個元素,但我們怎麽打印出generator的每一個元素呢?

如果要一個一個打印出來,可以通過next()函數獲得generator的下一個返回值:

技術分享
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
技術分享

我們講過,generator保存的是算法,每次調用next(g),就計算出g的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration的錯誤。

當然,上面這種不斷調用next(g)實在是太變態了,正確的方法是使用for循環,因為generator也是可叠代對象:

技術分享
>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25
36
49
64
81
技術分享

所以,我們創建了一個generator後,基本上永遠不會調用next(),而是通過for循環來叠代它,並且不需要關心StopIteration的錯誤。

generator非常強大。如果推算的算法比較復雜,用類似列表生成式的for循環無法實現的時候,還可以用函數來實現。

比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契數列用列表生成式寫不出來,但是,用函數把它打印出來卻很容易:

技術分享
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return ‘done‘
技術分享

註意,賦值語句:

a, b = b, a + b

相當於:

t = (b, a + b) # t是一個tuple
a = t[0]
b = t[1]

但不必顯式寫出臨時變量t就可以賦值。

上面的函數可以輸出斐波那契數列的前N個數:

技術分享
>>> fib(6)
1
1
2
3
5
8
‘done‘
技術分享

仔細觀察,可以看出,fib函數實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出後續任意的元素,這種邏輯其實非常類似generator。

也就是說,上面的函數和generator僅一步之遙。要把fib函數變成generator,只需要把print(b)改為yield b就可以了:

技術分享
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return ‘done‘
技術分享

這就是定義generator的另一種方法。

如果一個函數定義中包含yield關鍵字,那麽這個函數就不再是一個普通函數,而是一個generator

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

這裏,最難理解的就是generator和函數的執行流程不一樣。函數是順序執行,遇到return語句或者最後一行函數語句就返回。

而變成generator的函數,在每次調用next()的時候執行,遇到yield語句返回,再次執行時從上次返回的yield語句處繼續執行。

舉個簡單的例子,定義一個generator,依次返回數字1,3,5:

技術分享
def odd():
    print(‘step 1‘)
    yield 1
    print(‘step 2‘)
    yield(3)
    print(‘step 3‘)
    yield(5)
技術分享

調用該generator時,首先要生成一個generator對象,然後用next()函數不斷獲得下一個返回值:

技術分享
>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
技術分享

可以看到,odd不是普通函數,而是generator,在執行過程中,遇到yield就中斷,下次又繼續執行。執行3次yield後,已經沒有yield可以執行了,所以,第4次調用next(o)就報錯。

回到fib的例子,我們在循環過程中不斷調用yield,就會不斷中斷。當然要給循環設置一個條件來退出循環,不然就會產生一個無限數列出來。

同樣的,把函數改成generator後,我們基本上從來不會用next()來獲取下一個返回值,而是直接使用for循環來叠代:

技術分享
>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8
技術分享

但是用for循環調用generator時,發現拿不到generator的return語句的返回值。如果想要拿到返回值,必須捕獲StopIteration錯誤,返回值包含在StopIterationvalue中:

技術分享
>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print(‘g:‘, x)
...     except StopIteration as e:
...         print(‘Generator return value:‘, e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
技術分享

生成器就是叠代器

yield的功能:

1.與return類似,都可以返回值,但不一樣的地方在於yield返回多次值,而return只能返回一次值

2.為函數封裝好了__iter__和__next__方法,把函數的執行結果做成了叠代器

3.遵循叠代器的取值方式obj.__next__(),觸發的函數的執行,函數暫停與再繼續的狀態都是由yield保存的

技術分享
d={‘a‘:1,‘b‘:2,‘c‘:3}
obj=d.__iter__()
while True:
    try:
        i=obj.__next__()
        print(i)
    except StopIteration:
        break
技術分享 技術分享
def foo():
    print(‘first‘)
    yield 1
    print(‘second‘)
    yield 2
    print(‘third‘)
    yield 3
    print(‘fouth‘)
g=foo()
for i in g:
    print(i)
技術分享 技術分享
import time
def countdown(n):
    print(‘start---->‘)
    while n>=0:
        yield n
        time.sleep(1)
        n-=1
    print(‘stop---->‘)
g=countdown(5)
for i in g:
    print(i)
技術分享

動態查看文件最後一行,並過濾顯示。

技術分享
import time
def tail(filepath,encoding=‘utf-8‘):
    with open(filepath,encoding=encoding) as f:
        f.seek(0,2)
        while True:
            line=f.readline()
            if line:
                yield line
            else:
                time.sleep(0.5)
def grep(lines,pattern):
    for line in lines:
        if pattern in line:
            yield line
g1=tail(‘day9.txt‘)
g2=grep(g1, ‘error‘)
g3=grep(g2, ‘404‘)
for i in g3:
    print(i)
技術分享

day21:三元表達式、列表解析、生成器