c++ 11 遊記 之 decltype constexpr
title: c++ 11 遊記 1
keyword :c++ 11 decltype constexpr
作者:titer1 zhangyu
出處:www.drysaltery.com
聯系:1307316一九六八(僅接受短信)
聲明:本文採用下面協議進行授權: 自由轉載-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 。轉載請註明作者及出處。
tips for image: http://7xjs3n.com1.z0.glb.clouddn.com
c++ 11 遊記 1(decltype constexpr)
一. 結緣 decltype
參考source
上code
#include <iostream>
struct A {
double x;
};
const A* a = new A();
decltype( a->x ) x3; // type of x3 is double (declared type)
decltype((a->x)) x4 = x3; // type of x4 is const double& (lvalue expression)
template <class T, class U>
auto add(T t, U u) -> decltype (t + u); // return type depends on template parameters
int main()
{
int i = 33;
decltype(i) j = i*2;
std::cout << "i = " << i << ", "
<< "j = " << j << ‘\n‘;
auto f = [](int a, int b) -> int {
return a*b;
};
decltype (f) f2{f}; // the type of a lambda function is unique and unnamed
i = f(2, 2);
j = f2(3, 3);
std::cout << "i = " << i << ", "
<< "j = " << j << ‘\n‘;
}
初步心得
此論要點:
- 初步掌握四種情形,具體看代碼
- 函數後置的返回類型
- 變量(無括號的)申明
- 變量(有括號的)申明
- 和Lamda表達式相關
-
- 須要註意的是。假設一個對象的名稱加上括號,它成為左值表達式
- 他還是lamda表達式的好基友喔。
decltype is useful when declaring types that are difficult or impossible to declare using standard notation, like lambda-related types or types that depend on template parameters.
嘗試難點
If expression is a function call which returns a prvalue of class type or is a comma expression whose right operand is such a function call, a temporary object is not introduced for that prvalue. The class type need not be complete or have an available destructor. This rule doesn’t apply to sub-expressions:in decltype(f(g())), g() must have a complete type, but f() need not.
debug情況
我試著改變lamda表達式中的參數。可是編譯器提示我。不能通過,原因待查明
二. constexpr
首先了解字面值 LiteralType,經常使用語字符串
能夠在編譯時期被動地計算表達式的值
- constexpr 將編譯期常量概念延伸至括用戶自己定義常量以及常量函數,其值的不可改動性由編譯器保證。因而constexpr 表達式是一般化的。受保證的常量表達式
比const 前置修飾的函數 的能力 更廣
code from csdn
enum Flags { good=0, fail=1, bad=2, eof=4 };
constexpr int operator|(Flags f1, Flags f2)
{ return Flags(int(f1)|int(f2)); }
void f(Flags x)
{
switch (x) {
case bad: /* … */ break;
case eof: /* … */ break;
case bad|eof: /* … */ break;
default: /* … */ break;
}
}
constexpr int x1 = bad|eof; // ok
void f(Flags f3)
{
// 錯誤:由於f3不是常量,所以無法在編譯時期計算這個表達式的結果值
constexpr int x2 = bad|f3;
int x3 = bad|f3; // ok。能夠在執行時計算
}
code from cpp.com
#include <iostream>
#include <stdexcept>
// The C++11 constexpr functions use recursion rather than iteration
// (C++14 constexpr functions may use local variables and loops)
constexpr int factorial(int n)
{
return n <= 1 ? 1 : (n * factorial(n-1));
}
// literal class
class conststr {
const char * p;
std::size_t sz;
public:
template<std::size_t N>
constexpr conststr(const char(&a)[N]) : p(a), sz(N-1) {}
// constexpr functions signal errors by throwing exceptions
// in C++11, they must do so from the conditional operator ?:
constexpr char operator[](std::size_t n) const {
return n < sz ? p[n] : throw std::out_of_range("");
}
constexpr std::size_t size() const { return sz; }
};
// C++11 constexpr functions had to put everything in a single return statement
// (C++14 doesn‘t have that requirement)
constexpr std::size_t countlower(conststr s, std::size_t n = 0,
std::size_t c = 0) {
return n == s.size() ? c :
s[n] >= ‘a‘ && s[n] <= ‘z‘ ?
countlower(s, n+1, c+1) :
countlower(s, n+1, c);
}
// output function that requires a compile-time constant, for testing
template<int n> struct constN {
constN() { std::cout << n << ‘\n‘; }
};
int main()
{
std::cout << "4! = " ;
constN<factorial(4)> out1; // computed at compile time
volatile int k = 8; // disallow optimization using volatile
std::cout << k << "! = " << factorial(k) << ‘\n‘; // computed at run time
std::cout << "Number of lowercase letters in \"Hello, world!\" is ";
constN<countlower("Hello, world!")> out2; // implicitly converted to conststr
}
心得
- 叠代函數的值 在編譯期間計算得到!!
!!
!
- 還有就是下圖,具體例如以下:
三.其它:好資料
scott meyer 講cpp11
C++11 FAQ中文版:常量表達式(constexpr)
cpp 我覺得最好資料之中的一個
c++ 11 遊記 之 decltype constexpr