HDU——T 2119 Matrix
阿新 • • 發佈:2017-08-26
source for accepted pre accep int targe clu others
Your task is to give out the minimum times of deleting all the ‘1‘ in the matrix.
The first line contains two integers n,m(1<=n,m<=100), n is the number of rows of the given matrix and m is the number of columns of the given matrix.
The next n lines describe the matrix:each line contains m integer, which may be either ‘1’ or ‘0’.
n=0 indicate the end of input.
Recommend
威士忌 | We have carefully selected several similar problems for you: 2115 2117 2114 2118 2120
格點為一的格子坐標連邊
http://acm.hdu.edu.cn/showproblem.php?pid=2119
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3097 Accepted Submission(s): 1429
Your task is to give out the minimum times of deleting all the ‘1‘ in the matrix.
Input There are several test cases.
The first line contains two integers n,m(1<=n,m<=100), n is the number of rows of the given matrix and m is the number of columns of the given matrix.
The next n lines describe the matrix:each line contains m integer, which may be either ‘1’ or ‘0’.
n=0 indicate the end of input.
Output For each of the test cases, in the order given in the input, print one line containing the minimum times of deleting all the ‘1‘ in the matrix.
Sample Input 3 3 0 0 0 1 0 1 0 1 0 0
Sample Output 2
Author Wendell
Source HDU 2007-10 Programming Contest_WarmUp
1 #include <cstring> 2 #include <cstdio> 3 4 bool vis[110]; 5 int map[110][110]; 6 int n,m,match[110]; 7 8 bool find(int x) 9 { 10 for(int y=1;y<=m;y++) 11 if(map[x][y]&&!vis[y]) 12 { 13 vis[y]=1; 14 if(!match[y]||find(match[y])) 15 { 16 match[y]=x; 17 return true; 18 } 19 } 20 return false; 21 } 22 23 int main() 24 { 25 for(;scanf("%d",&n)&&n;) 26 { 27 int ans=0; 28 scanf("%d",&m); 29 for(int i=1;i<=n;i++) 30 for(int j=1;j<=m;j++) 31 scanf("%d",&map[i][j]); 32 for(int i=1;i<=n;i++) 33 { 34 if(find(i)) ans++; 35 memset(vis,0,sizeof(vis)); 36 } 37 printf("%d\n",ans); 38 memset(map,0,sizeof(map)); 39 memset(match,0,sizeof(match)); 40 } 41 return 0; 42 }
HDU——T 2119 Matrix